Optics and Spectroscopy

, Volume 119, Issue 5, pp 738–743 | Cite as

The formation of molecular aggregates of sulfophthalocyanine in complexes with semiconductor nanocrystals

  • D. R. Dadadzhanov
  • I. V. Martynenko
  • A. O. Orlova
  • V. G. Maslov
  • A. V. Fedorov
  • A. V. Baranov
Basic Problems of Optics


In this study, complexes of CdSe/ZnS quantum dots and quantum rods with sulfophthalocyanine molecules have been formed. Analysis of spectral and luminescent properties of solutions of the complexes has revealed that an increase in the number of molecules per one nanocrystal in a mixed solution results in a noticeable decrease in the intensity of the luminescence of the quantum dots and quantum rods. In addition, it has been found that, upon an increase in the concentration of sulfophthalocyanine molecules, the absorption spectra of the samples in the region of their first absorption band have signs of formation of nonluminiscent aggregates of sulfophthalocyanine molecules. Analysis of the absorption spectra of the mixed solutions has made it possible to demonstrate that the complexes with the quantum rods have a content of the sulfophthalocyanine aggregates significantly lower than the complexes with the quantum dots.


Quantum Yield Luminescence Spectrum Phosphine Oxide Molecular Aggregate Difference Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Efros, D. J. Lockwood, and L. Tsybeskov, Semiconductor Nanocrystals: From Basic Principles to Applications (Springer, 2003).CrossRefGoogle Scholar
  2. 2.
    Z. Aguilar, Nanomaterials for Medical Applications (Elsevier Science, 2012).Google Scholar
  3. 3.
    C. L. Cesar, in Methods in Molecular Biology (Clifton, 2014), Vol. 1199, pp. 3–9.Google Scholar
  4. 4.
    G. Charron, T. Stuchinskaya, D. R. Edwards, D. A. Russell, and T. Nann, J. Phys. Chem. C 116 (16), 9334 (2012).CrossRefGoogle Scholar
  5. 5.
    H. D. Duong and J. I. Rhee, Chem. Phys. Lett. 501 (4–6), 496 (2011).CrossRefADSGoogle Scholar
  6. 6.
    A. O. Orlova, V. G. Maslov, A. A. Stepanov, I. Gounko, and A. V. Baranov, Opt. Spectrosc. 105 (6), 889 (2008).CrossRefADSGoogle Scholar
  7. 7.
    A. O. Orlova, V. G. Maslov, A. V. Baranov, I. Gounko, and S. Byrne, Opt. Spectrosc. 105 (5), 726 (2008).CrossRefADSGoogle Scholar
  8. 8.
    T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, J. Nat. Canc. Inst. 90 (12), 889 (1998).CrossRefGoogle Scholar
  9. 9.
    V. Maslov, A. Orlova, and A. Baranov, Photosensitizers in Medicine, Environment, and Security (Springer, 2012), Chap. 7.Google Scholar
  10. 10.
    I. V. Martynenko, V. A. Kuznetsova, P. A. Kanaev, V. G. Maslov, A. Loudon, V. Zaharov, P. Parfenov, and K. G. Yu, Nanotecnology 26 (5), 055102 (2015).CrossRefADSGoogle Scholar
  11. 11.
    I. V. Martynenko, A. O. Orlova, V. G. Maslov, A. V. Baranov, A. V. Fedorov, and M. Artemyev, Beilstein J. Nanotechnol. 4, 895 (2013).CrossRefGoogle Scholar
  12. 12.
    P. J. Camp, A. C. Jones, R. K. Neely, and N. M. Speirs, J. Phys. Chem. A 106, 10725 (2002).CrossRefGoogle Scholar
  13. 13.
    K. Palewska, J. Sworakowski, J. Lipinski, and S. Nespurek, J. Photochem. Photobiol. A: Chemistry 223 (2–3), 149 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Palewska, J. Sworakowski, and J. Lipinski, Opt. Mater. 34 (10), 1717 (2012).CrossRefADSGoogle Scholar
  15. 15.
    Z. Petrasek and D. Phillips, Photochem. Photobiol. Sci. 2 (3), 236 (2003).CrossRefGoogle Scholar
  16. 16.
    E. A. McArthur, J. M. Godbe, D. B. Tice, and E. A. Weiss, J. Phys. Chem. C 116 (10), 6136 (2012).CrossRefGoogle Scholar
  17. 17.
    N. A. Kuznetsova, N. S. Gretsova, V. M. Derkacheva, O. L. Kaliya, and E. A. Lukyanets, J. Porph. Phthal. 07 (03), 147 (2003).CrossRefGoogle Scholar
  18. 18.
    M. Artemyev, B. Moller, and U. Woggon, Nano Letters 3 (4), 509 (2003).CrossRefADSGoogle Scholar
  19. 19.
    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101 (46), 9463 (1997).CrossRefGoogle Scholar
  20. 20.
    S. Tamang, G. Beaune, I. Texier, and P. Reiss, ACS Nano 5 (12), 9392 (2011).CrossRefGoogle Scholar
  21. 21.
    A. Ogunsipe, J.-Y. Chen, and T. Nyokong, New J. Chem. 28 (7), 822 (2004).CrossRefGoogle Scholar
  22. 22.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2007).Google Scholar
  23. 23.
    R. F. Kubin and A. N. Fletcher, J. Lumin. 27 (4), 455 (1982).CrossRefGoogle Scholar
  24. 24.
    T. Förster, Delocalized Excitation and Excitation Transfer (Florida State University, 1965).Google Scholar
  25. 25.
    S. Dhami, A. J. D. Mello, G. Rumbles, S. M. Bishop, D. Phillips, and A. Beeby, Photochem. Photobiol. 61 (4), 341 (1995).CrossRefGoogle Scholar
  26. 26.
    L. Dworak, V. V. Matylitsky, T. Ren, T. Basché, and J. Wachtveitl, J. Phys. Chem. C 118 (8), 4396 (2014).CrossRefGoogle Scholar
  27. 27.
    A. O. Orlova, I. V. Martynenko, V. G. Maslov, A. V. Fedorov, Y. K. Gun’ko, and A. V. Baranov, J. Phys. Chem. C 117 (44), 23425 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. R. Dadadzhanov
    • 1
  • I. V. Martynenko
    • 1
  • A. O. Orlova
    • 1
  • V. G. Maslov
    • 1
  • A. V. Fedorov
    • 1
  • A. V. Baranov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations