Optics and Spectroscopy

, Volume 119, Issue 4, pp 551–568 | Cite as

From optical magnetic resonance to dielectric nanophotonics (A review)

  • R. S. Savelev
  • S. V. Makarov
  • A. E. Krasnok
  • P. A. Belov
The International Year of Light 2015


The current state of research in the field of dielectric nanophotonics has been reviewed. “Dielectric nanophotonics” is considered to mean the field of science that studies the interaction of light with nanostructures composed of dielectric nanoparticles with a high value of the refractive index (high-index). These nanostructures allow to control not only the electric but also the magnetic component of light at the nanoscale. Optical properties of high-index dielectric nanoparticles are described; studies devoted to the development of dielectric nanophotonics devices, such as dielectric discrete waveguides, dielectric nanoantennas, and oligomers have been reviewed, and various methods of their preparation have been discussed.


Dielectric Permittivity Fano Resonance Magnetic Dipole Moment Silicon Nanoparticles Dissipative Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Intel’s Laser Chips Could Make Data Centers Run Better: intels-laser-chips-could-make-data-centers-run better/.Google Scholar
  2. 2.
    IBM Creates First Cheap, Commercially Viable, Electronic–Photonic Integrated Chip: www.extremetech. com/computing/142881-ibm-creates-firstcheap- commercially-viable-silicon-nanophotonicchip.Google Scholar
  3. 3.
    S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, IEEE International Electron Devices Meeting (IEDM) (2012), pp. 33.8.1–33.8.3.Google Scholar
  4. 4.
    D. Miller, Proc. IEEE. 97, 1166 (2009).CrossRefGoogle Scholar
  5. 5. Scholar
  6. 6.
    H. J. Caulfield and S. Dolev, Nat. Photon. 4, 261 (2010).CrossRefGoogle Scholar
  7. 7.
    Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, Nat. Commun. 5, 4876 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Miller, Nat. Photon. 4, 3 (2010).ADSCrossRefGoogle Scholar
  9. 9. 37095.wss.Google Scholar
  10. 10.
    V. V. Klimov, Nanoplasmonics (Pan Stanford Publishing, 2011).Google Scholar
  11. 11.
    S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).Google Scholar
  12. 12.
    V. V. Istomin. Y. N. Klimov and Y. A. Kosevich, Phys.- Usp. 51, 839 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. Kivshar, Phys.-Usp. 56, 539 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, Nanophotonics 1, 65 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    L. Novotny and N. V. Hulst, Nat. Photon. 5, 83 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    P. Biagioni, J. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, ACS Nano 5, 2042 (2011).CrossRefGoogle Scholar
  18. 18.
    M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, Nano Lett. 10, (7), 2721 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81 (9), 1714 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    D. Solis, A. Paul, J. Olson, L. Slaughter, P. Swanglap, W. S. Chang, and S. Link, Nano Lett. 13, 4779 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W.-S. Chang, and S. Link, Nano Lett. 12, 1349 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nature Photonics 7, 948 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kivshar and N. Zheludev, Nature Mater. 11, 917 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nature Mater. 9, 707 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    A. Boltasseva and H. A. Atwater, Science 331 (6015), 290 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    V. Veselago, Sov. Phys. Usp. 10, 509 (1968).ADSCrossRefGoogle Scholar
  27. 27.
    X. Ni, N. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    M. Kauranen and A. Zayats, Nat. Phot. 6, 737 (2012).CrossRefGoogle Scholar
  29. 29.
    R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Springer, Wiley-Interscience, 2013).Google Scholar
  30. 30.
    A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, Science 343 (6167), 160 (2014).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, Phys. Rev. B 82, 045404 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, Z. JingBo, and B. S. Luk’yanchuk, Sci. Rep. 2 (49), 2 (2012).Google Scholar
  33. 33.
    A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Nano Lett. 12, 3749 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, ACS Nano 6 (1), 837 (2012).CrossRefGoogle Scholar
  35. 35.
    A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, Opt. Express 20, 20599 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    A. Evlyukhin, C. Reinhardt, and B. Chichkov, Phys. Rev. B 23, 235429 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    A. B. Evlyukhin, C. Reinhardt, E. Evlyukhin, and B. N. Chichkov, J. Opt. Soc. Am. B 30, 2589 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, Sci. Rep. 4, 4126 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, Phys. Rev. Lett. 102, 133901 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    M. Albooyeh, S. Kruk, C. Menzel, C. Helgert, M. Kroll, A. Krysinski, M. Decker, D. N. Neshev, T. Pertsch, C. Etrich, C. Rockstuhl, S. A. Tretyakov, C. R. Simovski, and Y. S. Kivshar, Sci. Rep. 4, 4484 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, Phys. Rev. B 89, 035435 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    A. E. Miroshnichenko and Y. S. Kivshar, Nano Lett. 12 (12), 6459 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).CrossRefGoogle Scholar
  44. 44.
    G. Vuye, S. Fisson, V. N. Van, Y. Wang, J. Rivory, and F. Abeles, Thin Solid Films 233, 166 (1993).ADSCrossRefGoogle Scholar
  45. 45.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).CrossRefGoogle Scholar
  46. 46.
    J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).zbMATHGoogle Scholar
  47. 47.
    L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, Adv. Mat. 24 (44), 5934 (2012).CrossRefGoogle Scholar
  48. 48.
    L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, Nat. Commun. 4, 1904 (2013).ADSCrossRefGoogle Scholar
  49. 49.
    M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, ACS Nano 8 (11), 11181 (2014).CrossRefGoogle Scholar
  50. 50.
    D. W. Bauerle, Laser Processing and Chemistry (Wiley, Springer Science & Business Media, 2011).CrossRefGoogle Scholar
  51. 51.
    P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, and G. Viau, J. Phys. Chem. C 114 (36), 15266 (2010).CrossRefGoogle Scholar
  52. 52.
    Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, Nat. Commun. 4, 1527 (2013).ADSCrossRefGoogle Scholar
  53. 53.
    U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, Appl. Phys. A 114, 45 (2014).ADSCrossRefGoogle Scholar
  54. 54.
    U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Nat. Commun. 5 (340), 2 (2014).Google Scholar
  55. 55.
    P. Spinelli, M. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).ADSCrossRefGoogle Scholar
  56. 56.
    S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, Nano Lett. 13 (4), 1806 (2013).CrossRefADSGoogle Scholar
  57. 57.
    I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, ACS Nano 7 (9), 7824 (2013).CrossRefGoogle Scholar
  58. 58.
    M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, Nano Lett. 14 (11), 6488 (2014).ADSCrossRefGoogle Scholar
  59. 59.
    N. Daldosso and L. Pavesi, Las. Photon. Rev. 3, 508 (2009).CrossRefGoogle Scholar
  60. 60.
    C. Kopp, S. Bernabe, B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Selec. Top. Quantum Electron. 17 (3), 498 (2011).CrossRefGoogle Scholar
  61. 61.
    Y. Chen, H. Li, and M. Li, Sci. Rep. 2, 622 (2012).ADSGoogle Scholar
  62. 62.
    L. Tong, R. Gattass, J. Ashcom, A. He, J. Lou, M. Chen, I. Maxwell, and E. Mazur, Nature 426, 816 (2004).ADSCrossRefGoogle Scholar
  63. 63.
    M. Law, D. Sirbuly, J. Johnson, J. Goldberger, R. Saykally, and P. Yang, Science 305, 1269 (2004).ADSCrossRefGoogle Scholar
  64. 64.
    K. Yamada, Silicon Photonics II (Springer-Verlag, Berlin, 2011).Google Scholar
  65. 65.
    R. Espinola, R. Ahmad, F. Pizzuto, M. Steel, and R. Osgood, Opt. Express 8, 517 (2001).ADSCrossRefGoogle Scholar
  66. 66.
    A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).ADSCrossRefGoogle Scholar
  67. 67.
    M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, J. Lightwave Technol. 18, 1402 (2000).ADSCrossRefGoogle Scholar
  68. 68.
    A. Miroshnichenko and Y. Kivshar, Opt. Express 13, 3969 (2005).ADSCrossRefGoogle Scholar
  69. 69.
    A. Yariv, Y. Xu, R. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).ADSCrossRefGoogle Scholar
  70. 70.
    M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).ADSCrossRefGoogle Scholar
  71. 71.
    S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. 13 (19), 1501 (2001).CrossRefGoogle Scholar
  72. 72.
    W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).ADSCrossRefGoogle Scholar
  73. 73.
    S. A. Maier and H. A. Atwater, J. Appl. Phys. 98 (1), 011101 (2005).ADSCrossRefGoogle Scholar
  74. 74.
    A. Alù and N. Engheta, Phys. Rev. B 74, 205436 (2006).ADSCrossRefGoogle Scholar
  75. 75.
    R. Shore and A. Yaghjian, El. Lett. 41, 578 (2005).CrossRefGoogle Scholar
  76. 76.
    P. A. Belov and C. R. Simovski, Phys. Rev. E 72, 036618 (2005).ADSCrossRefGoogle Scholar
  77. 77.
    A. Alù and N. Engheta, N. J. Phys. 12 (1), 013015 (2010).CrossRefGoogle Scholar
  78. 78.
    S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, J. Opt. Soc. Am. B 12, 1267 (1995).ADSCrossRefGoogle Scholar
  79. 79.
    C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).ADSCrossRefGoogle Scholar
  80. 80.
    P.-G. Luan and K.-D. Chang, Opt. Express 14, 3263 (2006).ADSCrossRefGoogle Scholar
  81. 81.
    R. Zhao, T. Zhai, Z. Wang, and D. Liu, J. Lightwave Technol. 27, 4544 (2009).ADSCrossRefGoogle Scholar
  82. 82.
    S. Zeng, Y. Zhang, B. Li, and E. Pun, Photonics and Nanostructures–Fundamentals and Applications (2010), Vol. 8, No. 1, pp. 32–37.ADSGoogle Scholar
  83. 83.
    H. Guo, Y. Zhang, and B. Li, Opt. Commun. 284 (9), 2292 (2011).MathSciNetADSCrossRefGoogle Scholar
  84. 84.
    R. Quidant, J.-C. Weeber, A. Dereux, D. Peyrade, C. Girard, and Y. Chen, Phys. Rev. E 65, 036616 (2002).ADSCrossRefGoogle Scholar
  85. 85.
    J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, Phys. Rev. A 79, 051801 (2009).ADSCrossRefGoogle Scholar
  86. 86.
    J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, Phys. Rev. A 83, 035803 (2011).ADSCrossRefGoogle Scholar
  87. 87.
    R. A. Shore and A. D. Yaghjian, Radio Science 47, RS2014 (2012).ADSGoogle Scholar
  88. 88.
    R. A. Shore and A. D. Yaghjian, Radio Science 47, RS2015 (2012).ADSGoogle Scholar
  89. 89.
    C. Linton, V. Zalipaev, and I. Thompson, Wave Motion 50 (1), 29 (2013).MathSciNetCrossRefGoogle Scholar
  90. 90.
    R. Savelev, A. Miroshnichenko, A. Sukhorukov, and Y. Kivshar, JETP Lett. 100 (7), 430 (2014).ADSCrossRefGoogle Scholar
  91. 91.
    M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).ADSCrossRefGoogle Scholar
  92. 92.
    K.-Y. Lee, C.-N. Chen, and Y.-J. Lin, Opt. Quantum Electron. 40 (9), 633 (2008).CrossRefGoogle Scholar
  93. 93.
    J. Feng, Q. Li, and S. Fan, Opt. Lett. 35, 3904 (2010).ADSCrossRefGoogle Scholar
  94. 94.
    R. S. Savelev, D. S. Filonov, P. V. Kapitanova, A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, Appl. Phys. Lett. 105 (18), 81116 (2014).ADSCrossRefGoogle Scholar
  95. 95.
    V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, Chem. Rev. 111, 3888 (2011).CrossRefGoogle Scholar
  96. 96.
    I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, Nanophotonics 1, 65 (2012).ADSCrossRefGoogle Scholar
  97. 97.
    P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).CrossRefGoogle Scholar
  98. 98.
    A. Alù and N. Engheta, Phys. Rev. Lett. 104, 213902 (2010).ADSCrossRefGoogle Scholar
  99. 99.
    L. Novotny and N. V. Hulst, Nat. Photon. 5, 83 (2011).ADSCrossRefGoogle Scholar
  100. 100.
    T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, Nano Lett. 11, 3779 (2011).ADSCrossRefGoogle Scholar
  101. 101.
    D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, Nat. Commun. 2, 1 (2011).CrossRefGoogle Scholar
  102. 102.
    A. Devilez, B. Stout, and N. Bonod, ACS Nano 4, 3390 (2010).CrossRefGoogle Scholar
  103. 103.
    D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photon. 4, 83 (2010).ADSCrossRefGoogle Scholar
  104. 104.
    O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, Nature Mat. 11, 573 (2012).ADSCrossRefGoogle Scholar
  105. 105.
    D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photonics 8, 13 (2014).ADSCrossRefGoogle Scholar
  106. 106.
    J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, Nano Lett. 12 (6), 2817 (2012).CrossRefGoogle Scholar
  107. 107.
    S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, Nano Lett. 11 (4), 1657 (2011).ADSCrossRefGoogle Scholar
  108. 108.
    P. Spinelli, V. E. Ferry, J. V. D. Groep, M. V. Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, J. Opt. 14, 24002 (2012).CrossRefGoogle Scholar
  109. 109.
    K. Kim, J. H. Kim, H. P. Kim, K. Park, H. Nam, S. Lee, S. Kim, K. Choi, S. Y. Kim, and C. Kwon, J. Controlled Release. 146, 219 (2010).CrossRefGoogle Scholar
  110. 110.
    N. Chanda, P. Kan, L. D. Watkinson, R. Shukla, A. Zambre, T. L. Carmack, H. Engelbrecht, J. R. Lever, K. Katti, G. M. Fent, S. W. Casteel, C. J. Smith, W. H. Miller, S. Jurisson, and K. V. Katti, Nanomedicine: Nanotechnology, Biology and Medicine (2010), Vol. 6, pp. 201–209.CrossRefGoogle Scholar
  111. 111.
    W. Cai, T. Gao, H. Hong, and J. Sun, Nanotechnol. Sci. Appl. 1, 17 (2008).Google Scholar
  112. 112.
    J. A. Schuller and M. L. Brongersma, Opt. Express 17, 24084 (2009).ADSCrossRefGoogle Scholar
  113. 113.
    A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, JETP Lett. 94, 635 (2011).CrossRefGoogle Scholar
  114. 114.
    M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowskis, and J. Aizpurua, Opt. Express 20, 13636 (2012).ADSCrossRefGoogle Scholar
  115. 115.
    B. Rolly, B. Stout, and N. Bonod, Opt. Express 20, 20376 (2012).ADSCrossRefGoogle Scholar
  116. 116.
    J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, Opt. Express 22, 30889 (2014).ADSCrossRefGoogle Scholar
  117. 117.
    M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, arXiv:1405.5038 (2014).Google Scholar
  118. 118.
    C. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1982).Google Scholar
  119. 119.
    K. Itoh, O. Ishii, Y. Nagai, N. Suzuki, Y. Kimachi, and O. Michikami, J. Supercond. 5, 485 (1992).ADSCrossRefGoogle Scholar
  120. 120.
    J. J. Adams, E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, and J. A. Lewis, Adv. Mat. 23, 1335 (2011).CrossRefGoogle Scholar
  121. 121.
    K. Fujimoto and H. Morishita, Modern Small Antennas (Cambridge University Press, 2013).CrossRefGoogle Scholar
  122. 122.
    R. C. Hansen, Electrically Small, Superdirective, and Superconducting Antennas (Wiley-Interscience, 2006).CrossRefGoogle Scholar
  123. 123.
    A. E. Krasnok, C. R. Simovski, P. A. Belov, and Y. S. Kivshar, Nanoscale 6, 7354 (2014).ADSCrossRefGoogle Scholar
  124. 124.
    A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, Appl. Phys. Lett. 104, 133502 (2014).ADSCrossRefGoogle Scholar
  125. 125.
    E. Palik, Handbook of Optical Constant of Solids (Academic, San Diego, 1985).Google Scholar
  126. 126.
    U. Fano, Phys. Rev. 124, 1866 (1961).zbMATHADSCrossRefGoogle Scholar
  127. 127.
    M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, Phys. Rev. B 88, 205106 (2013).ADSCrossRefGoogle Scholar
  128. 128.
    N. A. Mirin, K. Bao, and P. Nordlander, J. Phys. Chem. A 113 (16), 4028 (2009).CrossRefGoogle Scholar
  129. 129.
    N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9 (4), 1663 (2009).ADSCrossRefGoogle Scholar
  130. 130.
    K. Bao, N. Mirin, and P. Nordlander, Appl. Phys. A 100, 333 (2010).ADSCrossRefGoogle Scholar
  131. 131.
    P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, Nano Lett. 11 (9), 3922 (2011).ADSCrossRefGoogle Scholar
  132. 132.
    J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, Nano Lett. 12 (2), 1058 (2012).ADSCrossRefGoogle Scholar
  133. 133.
    M. Frimmer, T. Coenen, and A. F. Koenderink, Phys. Rev. Lett. 108, 077404 (2012).ADSCrossRefGoogle Scholar
  134. 134.
    M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, Nano Lett. 12 (4), 2101 (2012).ADSCrossRefGoogle Scholar
  135. 135.
    Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, and N. J. Halas, Proc. of the National Academy of Sciences 23, 9215 (2013).ADSCrossRefGoogle Scholar
  136. 136.
    A. García-Etxarri, R. Gómez-Medina, L. S. Froufe- Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, Opt. Express 19, 4815 (2011).ADSCrossRefGoogle Scholar
  137. 137.
    D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, Appl. Phys. Lett. 104, 021104 (2014).ADSCrossRefGoogle Scholar
  138. 138.
    B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, Nanoscale 5, 6395 (2013).ADSCrossRefGoogle Scholar
  139. 139.
    J. A. Schuller and M. L. Brongersma, Opt. Express 17, 24084 (2009).ADSCrossRefGoogle Scholar
  140. 140.
    A. Devilez, B. Stout, and N. Bonod, ACS Nano 4, 3390 (2010).CrossRefGoogle Scholar
  141. 141.
    J. M. Geffrin, B. García-Etxarri, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, Nat. Commun. 3, 1171 (2012).ADSCrossRefGoogle Scholar
  142. 142.
    D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, Opt. Express 16, 15297 (2008).ADSCrossRefGoogle Scholar
  143. 143.
    B. Rolly, J.-M. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, Sci. Rep. 3, 3063 (2013).ADSCrossRefGoogle Scholar
  144. 144.
    E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, Appl. Phys. Lett. 105, 221109 (2014).ADSCrossRefGoogle Scholar
  145. 145.
    G. Boudarham, R. Abdeddaim, and N. Bonod, Appl. Phys. Lett. 104, 021117 (2014).ADSCrossRefGoogle Scholar
  146. 146.
    D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, Appl. Phys. Lett. 100, 201113 (2012).ADSCrossRefGoogle Scholar
  147. 147.
    G. S. Blaustein, M. I. Gozman, O. Samoylova, I. Y. Polishchuk, and A. L. Burin, Opt. Express 15, 17380 (2007).ADSCrossRefGoogle Scholar
  148. 148.
    Z. Chen, A. Taflove, and V. Backman, Opt. Lett. 31, 389 (2006).ADSCrossRefGoogle Scholar
  149. 149.
    J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, Phys. Rev. Lett. 108, 097402 (2012).ADSCrossRefGoogle Scholar
  150. 150.
    L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, Phys. Rev. Lett. 98, 157403 (2007).ADSCrossRefGoogle Scholar
  151. 151.
    J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, Phys. Rev. Lett. 99, 107401 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • R. S. Savelev
    • 1
  • S. V. Makarov
    • 1
  • A. E. Krasnok
    • 1
  • P. A. Belov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations