Optics and Spectroscopy

, Volume 119, Issue 4, pp 642–655 | Cite as

Limits to the applicability of the rule of equality to unity of the sum of quantum yields of fluorescence and transition to the triplet state for complex organic molecules in the condensed phase (A review)

  • V. L. Ermolaev
  • E. B. Sveshnikova
Condensed-Matter Spectroscopy

Abstract

For different classes of molecules, we have estimated from experimental data the lower limit of the height of S1 levels for which the rule qfl + qT = 1 (qfl is the fluorescence quantum yield, qT is the quantum yield of formation of the triplet state) begins to be violated; i.e., direct nonradiative transition from the S1-state to the ground state appears, the quantum yield of which exceeds measurement errors. We have found that, for compounds of different classes, this limit varies from 15000 to 21000 cm–1. It has been shown that the difference in the limit may be explained in terms of the inductive resonance theory of nonradiative transitions, which takes into account the localization of the electronic transition, its rate constant, and the overlap of the vibronic spectrum of the molecule with the vibrational spectrum of high-frequency vibrations taking into account the variation in the rate constant of the intersystem crossing transition to the triplet state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Ermolaev, Opt. Spektrosk. 13 (1), 90 (1962).Google Scholar
  2. 2.
    V. L. Ermolaev, Usp. Fiz. Nauk 80 (1), 40 (1963).Google Scholar
  3. 3.
    V. L. Ermolaev and E. B. Sveshnikova, Dokl. Akad. Nauk SSSR 149 (6), 1295 (1963).Google Scholar
  4. 4.
    V. L. Ermolaev, Izv. Akad. Nauk SSSR, Ser. Fiz. 27 (5), 617 (1963).Google Scholar
  5. 5.
    V. L. Ermolaev, Opt. Spektrosk. 16 (5), 704 (1964).Google Scholar
  6. 6.
    V. L. Ermolaev and E. B. Sveshnikova, Opt. Spektrosk. 26 (4), 587 (1964).Google Scholar
  7. 7.
    V. L. Ermolaev, E. B. Sveshnikova, and E. A. Saenko, Opt. Spektrosk. 22 (1), 165 (1967).ADSGoogle Scholar
  8. 8.
    V. L. Ermolaev and E. B. Sveshnikova, Opt. Spektrosk. 24 (2), 293 (1968).Google Scholar
  9. 9.
    C. A. Hutchison, Jr., and B. W. Mangum, J. Chem. Phys. 32 (4), 1261 (1960).CrossRefADSGoogle Scholar
  10. 10.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Electronic Excitation Energy Transfer (Nauka, Leningrad, 1977) [in Russian].Google Scholar
  11. 11.
    V. L. Ermolaev and E. B. Sveshnikova, Acta Phys. Polonica 34 (5), 771 (1968).Google Scholar
  12. 12.
    S. I. Wawilow, Z. Physik 42, 927 (1927).CrossRefGoogle Scholar
  13. 13.
    M. Kasha, Dicuss. Faraday Soc. 9, 14 (1950).CrossRefGoogle Scholar
  14. 14.
    V. L. Ermolaev, Russ. Chem. Rev. 70 (6), 471 (2001).CrossRefADSGoogle Scholar
  15. 15.
    T. Itoh, Chem. Rev. 112, 4541 (2012).CrossRefGoogle Scholar
  16. 16.
    V. G. Plotnikov, Doctoral Dissertation (Obninsk, 1980).Google Scholar
  17. 17.
    G. V. Maier and V. I. Danilova, Quantum Chemistry, Structure and Photonics Molecules (Tomsk. Gos. Univ., 1984) [in Russian].Google Scholar
  18. 18.
    G. V. Maier, Photophysical Processes and Lasing Ability of Aromatic Molecules (Tomsk. Gos. Univ., 1992) [in Russian].Google Scholar
  19. 19.
    R. Englman, Nonradiative Decay of Ions and Molecules in Solids (North Holland, Amsterdam, 1979).Google Scholar
  20. 20.
    E. S. Medvedev and V. I. Osherov, Radiationless Transitions in Poliatomic Molecules, Springer Ser. in Chem. Phys. (Berlin, 1995), Vol. 57.Google Scholar
  21. 21.
    C. A. Jr. Hutchison and B. W. Mangum, J. Chem. Phys. 32, 1261 (1960).CrossRefADSGoogle Scholar
  22. 22.
    G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962).CrossRefADSGoogle Scholar
  23. 23.
    V. L. Ermolaev and E. B. Sveshnikova, Opt. Spektrosk. 30 (2), 379 (1971).Google Scholar
  24. 24.
    V. L. Ermolaev and E. B. Sveshnikova, Chem. Phys. Lett. 23 (3), 349 (1973).CrossRefADSGoogle Scholar
  25. 25.
    E. N. Bodunov, Opt. Spektrosk. 40 (4), 942 (1976).MathSciNetGoogle Scholar
  26. 26.
    V. L. Ermolaev and E. B. Sveshnikova, J. Lumin. 20 (4), 387 (1979).CrossRefGoogle Scholar
  27. 27.
    E. B. Sveshnikova, Doctoral Dissertation (GOI im. S.I. Vavilova, 1984).Google Scholar
  28. 28.
    A. A. Kaminsky, L. K. Aminov, V. L. Ermolaev, et al., Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian].Google Scholar
  29. 29.
    V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, Phys. Uspekhi 39, 261 (1996).CrossRefADSGoogle Scholar
  30. 29.
    V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, Errat. 40, 335 (1997).Google Scholar
  31. 30.
    E. B. Sveshnikova and V. L. Ermolaev, Opt. Spectrosc. 111 (1), 34 (2011).CrossRefADSGoogle Scholar
  32. 31.
    St. A. Payne and C. Bibeau, J. Lumin. 79, 143 (1998).CrossRefGoogle Scholar
  33. 32.
    C. Bibeau, St. A. Payne, and H. T. Powell, J. Opt. Soc. Am. B 12 (10), 1981 (1995).CrossRefADSGoogle Scholar
  34. 33.
    F. Quochi, R. Orru, F. Cordella, et al., J. Appl. Phys. 99, 053520 (2006).CrossRefADSGoogle Scholar
  35. 34.
    Ch. Doffek, N. Alzakhem, C. Bischof, J. Wahsner, T. Guden-Silber, J. Lugger, C. Platas-Iglesias, and M. Seitz, J. Am. Chem. Soc. 134, 16413 (2012).CrossRefGoogle Scholar
  36. 35.
    Ch. Doffek, J. Wahsner, E. Kreidt, and M. Seitz, Inorg. Chem. 53, 3253 (2014).CrossRefGoogle Scholar
  37. 36.
    E. B. Sveshnikova and S. P. Naumov, Opt. Spektrosk. 45 (3), 05 (1978).Google Scholar
  38. 37.
    H. Saigusa and T. Azumi, J. Chem. Phys. 71 (3), 1408 (1979).CrossRefADSGoogle Scholar
  39. 38.
    V. L. Ermolaev and K. K. Svitashev, Opt. Spektrosk. 7 (5), 664 (1959).Google Scholar
  40. 39.
    J. L. Kropp, W. R. Dowson, and M. W. Windsor, J. Phys. Chem. 73 (6), 1747 (1969).CrossRefGoogle Scholar
  41. 40.
    E. B. Sveshnikova and V. P. Kondakova, Opt. Spektrosk. 50 (5), 870 (1981).Google Scholar
  42. 41.
    V. L. Ermolaev and E. B. Sveshnikova, Acta Phys. Polon. A 95 (3), 299 (1999).Google Scholar
  43. 42.
    C. A. Parker and T. A. Joyce, Trans. Faraday Soc. 62 (10), 2785 (1966).CrossRefGoogle Scholar
  44. 43.
    Atsushi Kobayashi, Absolute Measurements of Photoluminescence Quantum Yields of Organic Compounds Using an Integrating Sphere (Thesis, Gunma University, Japan, 2010).Google Scholar
  45. 44.
    W. Heinzelmann and H. Labhart, Chem. Phys. Lett. 4 (1), 20 (1969).CrossRefADSGoogle Scholar
  46. 45.
    T. Medinger and F. Wilkinson, Trans. Faradey Soc. 61 (4), 620 (1965).CrossRefGoogle Scholar
  47. 46.
    N. Nijegorodov, V. Ramachandran, and D. P. Winkoun, Spectrochim. Acta A 53, 1813 (1997).CrossRefADSGoogle Scholar
  48. 47.
    F. Lewitzka and H.-G. Lohmannsrober, Z. Phys. Chem. 150 (1), 69 (1986).CrossRefGoogle Scholar
  49. 48.
    A. Kearvell and F. Wilkinson, Chem. Phys. Lett. 11 (4), 472 (1971).CrossRefADSGoogle Scholar
  50. 49.
    B. Stevens and B. E. Algar, Chem. Phys. Lett. 1 (2), 58 (1967).CrossRefADSGoogle Scholar
  51. 50.
    H. De Vries and D. A. Wiersma, J. Chem. Phys. 70 (12), 5807 (1979).CrossRefADSGoogle Scholar
  52. 51.
    W. R. Lambert and A. H. Zewail, Chem. Phys. Lett. 69 (2), 270 (1980).CrossRefADSGoogle Scholar
  53. 52.
    M. Banasiewicz, I. Deperasinska, D. Fabjanowicz, and B. Kozankiewicz, Chem. Phys. Lett. 356, 541 (2002).CrossRefADSGoogle Scholar
  54. 53.
    N. Kanamaru, Y. R. Bhattacharjee, and E. C. Lim, Chem. Phys. Lett. 26 (2), 174 (1974).CrossRefADSGoogle Scholar
  55. 54.
    E. B. Sveshnikova, Izv. Akad. Nauk SSSR, Ser. Fiz. 29 (8), 1274 (1965).Google Scholar
  56. 55.
    M. M. Martin and L. Lindqvist, Chem. Phys. Lett. 22 (2), 309 (1973).CrossRefADSGoogle Scholar
  57. 56.
    W. Siebrand and D. F. Williams, J. Chem. Phys. 46, 403 (1967).CrossRefADSGoogle Scholar
  58. 57.
    A. Penzkofer, A. Beidoun, and M. Daiber, J. Lumin. 51, 297 (1992).CrossRefGoogle Scholar
  59. 58.
    R. Sens and K. H. Drexhage, J. Lumin. 24/25, 709 (1981).CrossRefGoogle Scholar
  60. 59.
    G. Porter and P. G. Bowers, Proc. R. Soc. A 286, 435 (1967).Google Scholar
  61. 60.
    B. M. Dzhagarov and G. P. Gurinovich, Excited Molecules: Kinetics of Transformations (Nauka, Leningrad, 1982) [in Russian].Google Scholar
  62. 61.
    B. M. Dzhagarov, Opt. Spektrosk. 28 (1), 66 (1970).Google Scholar
  63. 62.
    A. T. Gradushko, A. N. Sevchenko, K. N. Solovyov, et al., Photochem. Photobiol. 11, 387 (1970).CrossRefGoogle Scholar
  64. 63.
    A. T. Gradyushko, V. A. Mashenkov, K. N. Solov’ev, and M. P. Tsvirko, Zh. Prikl. Spektrosk. 9, 514 (1968).Google Scholar
  65. 64.
    V. A. Kuz’mitskii, K. N. Solov’ev, and M. P. Tsvirko, in Porphyrins: Spectroscopy, Electrochemistry, and Applications, Ed. by N. S. Enikolopyan (Nauka, Moscow 1987) [in Russian].Google Scholar
  66. 65.
    A. T. Gradyushko, V. N. Knyukshto, K. N. Solov’ev, and A. M. Shul’ga, Opt. Spektrosk. 44 (3), 458 (1978).Google Scholar
  67. 66.
    K. N. Solov’ev, V. N. Knyukshto, M. P. Tsvirko, and A. T. Gradyushko, Opt. Spektrosk. 41 (6), 964 (1976).Google Scholar
  68. 67.
    S. Tobita, Y. Kajii, and I. Tanaka, Two-Photon Absorption and Radiationless Transitions of Porphyrins (ACS Symposium Ser., 1986), Vol. 231, pp. 219–230.Google Scholar
  69. 68.
    M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. A. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, Chem. Eur. J., No. 11, 2299 (1998).CrossRefGoogle Scholar
  70. 69.
    E. Ermolina, Z. E. Kuznetsova, R. M. Gadirov, and G.V. Maier, Vestn. Tomsk. Gos. Univ., Khim., No. 340, 228 (2008).Google Scholar
  71. 70.
    D. M. Guilti, T. D. Mody, N. N. Gerasichuk, D. Magda, and J. Sessler, J. Am. Chem. Soc. 122 (34), 8289 (2000).CrossRefGoogle Scholar
  72. 71.
    A. P. Losev, E. I. Sagun, and I. N. Nichiporovich, Khim. Fiz. 6 (7), 907 (1987).Google Scholar
  73. 72.
    I. Connoly, E. B. Samuel, and A. F. Yanzen, Photochem. Photobiol. 36, 565 (1982).CrossRefGoogle Scholar
  74. 73.
    B. Beeby, A. W. Parker, M. S. C. Simpson, and D. Phillips, J. Photochem. Photobiol. B Biol. 16, 73 (1992).CrossRefGoogle Scholar
  75. 74.
    P. S. Vincett, E. M. Voigt, and K. E. Rieckhoff, J. Chem. Phys. 55, 4131 (1971).CrossRefADSGoogle Scholar
  76. 75.
    W. F. Kosonosky, S. E. Harrison, and R. Stander, J. Chem. Phys. 43, 831 (1965).CrossRefADSGoogle Scholar
  77. 76.
    K. Ishi and N. Kobayashi, The Porphyrin Handbook: Phthalocyanines: Spectroscopic and Electrochemical Characterization, Ed. by K. M. Kadish, K. M. Guilfard, and R. Smith (2002).Google Scholar
  78. 77.
    D. S. Lawrence and D. G. Witten, Photochem. Photobiol. 64, 923 (1996).CrossRefGoogle Scholar
  79. 78.
    J. Vie, R. S. Sinclair, and T. G. Truscott, JCS Faraday Trans. II. 74 (10), 1870 (1978).Google Scholar
  80. 79.
    P. Jacques and A. M. Braun, Helv. Chim. Acta 64, 1800 (1981).CrossRefGoogle Scholar
  81. 80.
    T. H. Tran-Thi, C. Desforge, and C. Thies, J. Phys. Chem. 93, 1226 (1989).CrossRefGoogle Scholar
  82. 81.
    J. Savolainen, D. van der Linden, N. Dijkhuizen, and J. L. Herek, J. Photochem. Photobiol. A. Chem. 196, 99 (2008).CrossRefGoogle Scholar
  83. 82.
    M. Durmus and T. Nyokong, Polyhedron 26, 3323 (2007).CrossRefGoogle Scholar
  84. 83.
    A. T. Gradyushko and M. P. Tsvirko, Opt. Spektrosk. 31 (4), 543 (1971).Google Scholar
  85. 84.
    R. P. Burgner and A. M. Goncalves, J. Chem. Phys. 60 (7), 2942 (1974).CrossRefADSGoogle Scholar
  86. 85.
    A. M. Ponte Goncalves and R. P. Burgner, J. Chem. Phys. 65, 1221 (1976).CrossRefADSGoogle Scholar
  87. 86.
    K. J. Borowski and R. E. Connors, J. Photochem. 16, 75 (1981).CrossRefGoogle Scholar
  88. 87.
    M.-H. Ha-Thi, N. Shafizadeh, L. Poisson, and B. Soep, J. Phys. Chem. A 117, 8111 (2013).CrossRefGoogle Scholar
  89. 88.
    S. Sorgues, L. Poisson, K. Raffael, L. Krim, B. Soep, and B. Shfizadeh, J. Chem. Phys. 124, 114302 (2006).CrossRefADSGoogle Scholar
  90. 89.
    X. Liu, U. Tripathy, Sh. V. Bhosale, St. J. Langford, and R. P. Steer, J. Phys. Chem. A 112, 8986 (2008).CrossRefGoogle Scholar
  91. 90.
    M. Maiti, B. R. Danger, and R. P. Steer, J. Phys. Chem. A 113, 11318 (2009).CrossRefGoogle Scholar
  92. 91.
    T. Nyokong, Coord. Chem. Rev. 251, 1707 (2007).CrossRefGoogle Scholar
  93. 92.
    E. C. Kaya, M. Durmus, E. Yanmaz, and H. Kantekin, Turkish J. Chem. 38, 1118 (2014).CrossRefGoogle Scholar
  94. 93.
    Y. Yilmaz, A. Erdogmus, and M. K. Sener, Turkish J. Chem. 38, 1083 (2014).CrossRefGoogle Scholar
  95. 94.
    S. M. Bishop, A. Beeby, A. W. Parker, M. S. C. Foley, and D. Phillips, J. Photochem. Photobiol. A Chem. 90 (1), 39 (1995).CrossRefGoogle Scholar
  96. 95.
    M. J. Frampton, G. Accorsi, N. Armaroli, J. E. Rogers, P. A. Fleitz, K. J. McEwan, and H. L. Anderson, Org. Biomol. Chem. 5, 1056 (2007).CrossRefGoogle Scholar
  97. 96.
    W.-Ch. Hung, Ch.-D. Ho, Ch.-Pi. Liu, and Y.-P. Lee, J. Phys. Chem. 100, 3927 (1996).CrossRefGoogle Scholar
  98. 97.
    B. F. Minaev, Opt. Spectrosc. 98 (3), 336 (2005).CrossRefADSGoogle Scholar
  99. 98.
    A. Kleineveischede and J. Mattay, CRC Handbook of Organic Photochemistry and Photobiology, Ed. by W. M. Horspool and F. Lenci (2003), Vols. 1–2.Google Scholar
  100. 99.
    A. Andreoni, L. Nardo, M. Bondani, B. Zhao, and J. E. Roberts, J. Phys. Chem. B 117, 7203 (2013).CrossRefGoogle Scholar
  101. 100.
    S. Foley, M. N. Berberan-Santos, A. Fedorov, R. V. Benasson, S. Leach, and B. Gigante, Chem. Phys. 263, 437 (2001).CrossRefADSGoogle Scholar
  102. 101.
    V. Schettino, P. R. Selvi, R. Bini, and G. Cardini, J. Chem. Phys. 101, 11079 (1994).CrossRefADSGoogle Scholar
  103. 102.
    C. M. Gonzalez and J. A. Pincock, J. Am. Chem. Soc. 126 (29), 8870 (2004).CrossRefGoogle Scholar
  104. 103.
    S. L. Murov, I. Carmichael, and G. L. Hug, Handbook of Photochemistry, 2nd ed. (Marcel Decker, New York, 1993), Table 1, pp. 5–53.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. L. Ermolaev
    • 1
  • E. B. Sveshnikova
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations