Optics and Spectroscopy

, Volume 119, Issue 3, pp 343–355 | Cite as

Nanostructural antireflecting coatings: Classification analysis (A review)

  • K. V. Baryshnikova
  • A. S. Kadochkin
  • A. S. Shalin
The International Year of Light 2015


Many modern optical instruments require the use of high-quality antireflecting coatings. Singleand multilayer homogeneous films are mainly used for this purpose. However, an alternative line is rapidly developed at present, which is devoted to the design and use of nanostructural systems for increasing the transparency of different media. Despite the unified principle of operation of these coatings, which is based on the destructive interference of waves in the direction of reflection of light, approaches to their implementation may differ significantly. Different types of nanostructural coatings are considered in detail and classified, their optical properties are compared, and special attention is paid to methods of their manufacture. It is shown that different antireflecting coatings should be used for different purposes, and that coatings that combine properties of several classes often have better antireflecting capabilities.


Refractive Index Solar Cell Composite Coating Silicon Surface Effective Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, Energy Environ. Sci. 4,3779(2011).CrossRefGoogle Scholar
  2. 2.
    M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).Google Scholar
  3. 3.
    Lord Rayleigh, Proc. London Math. Soc. 1,51(1879).CrossRefGoogle Scholar
  4. 4.
    British Patent No.29561(1904).Google Scholar
  5. 5.
    US Patent No.3829197(1974).Google Scholar
  6. 6.
    US Patent No.5952084(1999).Google Scholar
  7. 7.
    Mechanical Properties of Sputtered Films, Brochure of CERAC (CERAC, Milwaukee, WI, 1992), Vol. 2.Google Scholar
  8. 8. htmGoogle Scholar
  9. 9.
    D. E. Aspnes and A. A. Studna, Phys. Rev. B 27,985(1983).ADSCrossRefGoogle Scholar
  10. 10.
    K. C. Krogman, T. Druffel, and M. K. Sunkara, Nanotecnology 16,338(2005).ADSCrossRefGoogle Scholar
  11. 11.
    J. Kiong, S. N. Das, J. P. Kar, Ji-H. Choi, and J.-M. Myoung, J. Mater. Chem. 20,10246(2010).CrossRefGoogle Scholar
  12. 12.
    M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, and E. F. Schubert, Appl. Phys. Express 3,082502(2010).ADSCrossRefGoogle Scholar
  13. 13.
    W. Joo, H. J. Kim, and J. K. Kim, Langmuir 26,5110(2010).CrossRefGoogle Scholar
  14. 14.
    H. G. Floch and P. F. Belleville, Proc. SPIE—Int. Soc. Opt. Eng. 1758,135(1992).ADSGoogle Scholar
  15. 15.
    M. Menning, P. W. Oliveira, and H. Schmidt, Thin Solid Films 351,99(1999).ADSCrossRefGoogle Scholar
  16. 16.
    K. H. Nielsen, D. K. Orzol, S. Koynov, S. Carney, E. Hultstein, and L. Wondraczek, Solar Energy Mater. Solar Cells 128,283(2014).CrossRefGoogle Scholar
  17. 17.
    D. Lee, M. F. Rubner, and R. E. Cohen, Nano Lett. 6,2305(2006).ADSCrossRefGoogle Scholar
  18. 18.
    K. Katagiri, Sh. Yamazaki, K. Inumaru, and K. Koumoto, Polym. J. 47,190(2015).CrossRefGoogle Scholar
  19. 19.
    E. Hutter and J. H. Fendler, Adv. Mater. 16,1685(2004).CrossRefGoogle Scholar
  20. 20.
    R. Lu, Y. Wang, L. Gu, W. Wang, Y. Fang, and J. Sha, Opt. Express 21,17484(2013).ADSCrossRefGoogle Scholar
  21. 21.
    W. Qiu, Yu. Ma, J. Zhao, J. Wang, M. Li, Sh. Li, and J. Pan, Jpn. J. Appl. Phys. 53,021501(2014).ADSCrossRefGoogle Scholar
  22. 22.
    US Patent No.5234748(1993).Google Scholar
  23. 23.
    J. W. Leem, Y. P. Kim, and J. Yu, J. Opt. Soc. Am. B 29,357(2012).ADSCrossRefGoogle Scholar
  24. 24.
    L. Wang, B.-B. Xu, Q.-D. Chen, Z.-C. Ma, R. Zhang, Q.-X. Liu, and H.-B. Sun, Opt. Lett. 36,3305(2011).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24,1422(1999).ADSCrossRefGoogle Scholar
  26. 26.
    W. H. Southwell, Opt. Lett. 8,584(1983).ADSCrossRefGoogle Scholar
  27. 27.
    J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, Sh.-Yu. Lin, W. Liu, and J. A. Smart, Nature Photon. 1,176(2007).ADSGoogle Scholar
  28. 28.
    L. Han and H. Zhao, Opt. Express 22,31907(2014).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Ya. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Ya. Lu, and L. Chi, Nano Res. 3,520(2010).CrossRefGoogle Scholar
  30. 30.
    W. H. Southwell, J. Opt. Soc. Am. A 8,584(1991).CrossRefGoogle Scholar
  31. 31.
    J. W. Leem, D. H. Joo, and J. S. Yu, Solar Energy Mater. Solar Cells 95,2221(2011).CrossRefGoogle Scholar
  32. 32.
    Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, Small 6,984(2010).CrossRefGoogle Scholar
  33. 33.
    C.-T. Wu, C.-H. Lin, C. Cheng, C.-S. Wu, H.-C. Ting, F.-C. Chang, and F.-H. Ko, Chem. Mater. 22,6583(2010).CrossRefGoogle Scholar
  34. 34.
    P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, Opt. Express 21,1(2013).ADSCrossRefGoogle Scholar
  35. 35.
    Ch. M. Eliason and M. D. Shawkey, Opt. Express22(S3), A642 (2014).ADSCrossRefGoogle Scholar
  36. 36. Scholar
  37. 37. Samples/SEM_MothEye.jpgGoogle Scholar
  38. 38.
    Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, Opt. Express 18,13063(2010).ADSCrossRefGoogle Scholar
  39. 39.
    U. Schulz, Opt. Express 17,8704(2009).ADSCrossRefGoogle Scholar
  40. 40.
    S. D. Gupta and G. S. Agarwal, Opt. Express 15,9614(2007).ADSCrossRefGoogle Scholar
  41. 41.
    US Patent No.7894137B2 (2011).Google Scholar
  42. 42.
    L. V. Thekkekara, V. G. Achanta, and S. D. Gupta, Opt. Express 22,17382(2014).ADSCrossRefGoogle Scholar
  43. 43.
    R. A. Arndt, J. F. Allison, J. G. Haynes, and A. Meulenburg, Jr., in Proceedings of the 11th IEEE Photovoltaic Specialist Conference (IEEE, New York, 1975), p. 40.Google Scholar
  44. 44.
    P. Campbell, J. Opt. Soc. Am. B 10,2410(1993).ADSCrossRefGoogle Scholar
  45. 45.
    P. Campbell, Sol. Energy Mater 21,165(1990).CrossRefGoogle Scholar
  46. 46.
    H. A. Atwater and A. Polman, Nature Mater. 9,205(2010).ADSCrossRefGoogle Scholar
  47. 47.
    K. R. Catchpole and A. Polman, Opt. Express 16,21793(2008).ADSCrossRefGoogle Scholar
  48. 48.
    P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, J. Opt. 14,024002(2012).ADSCrossRefGoogle Scholar
  49. 49.
    P. Spinelli, M. A. Verschuuren, and A. Polman, Nature Commun.3(692),1(2012).Google Scholar
  50. 50.
    C. R. Simovski, A. S. Shalin, P. M. Voroshilov, and P. A. Belov, J. Appl. Phys. 114,103104(2013).ADSCrossRefGoogle Scholar
  51. 51.
    A. W. Smith and A. Rohatgi, Solar Energy Mater. Solar Cells 29,51(1993).CrossRefGoogle Scholar
  52. 52.
    Y. W. Chen, P. Y. Han, and X. C. Zhang, Appl. Phys. Lett. 94,041106(2009).ADSCrossRefGoogle Scholar
  53. 53.
    P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, Solar Energy Mater. Solar Cells 90,2319(2006).CrossRefGoogle Scholar
  54. 54.
    B. W. Schneider, N. N. Lal, S. Baker-Finch, and T. P. White, Opt. Express22(S6), A1422 (2014).Google Scholar
  55. 55.
    J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, Appl. Phys. Lett. 73,1991(1998).ADSCrossRefGoogle Scholar
  56. 56.
    Y. Saito and T. Kosuge, Solar Energy Mater. Solar Cells 91,1800(2007).CrossRefGoogle Scholar
  57. 57.
    S. J. Cho, T. An, and G. Lim, Chem. Commun. 50,15710(2014).CrossRefGoogle Scholar
  58. 58.
    A. Y. Vorobyev and C. Guo, Phys. Rev. B 72,195422(2005).ADSCrossRefGoogle Scholar
  59. 59.
    Y. Yang, J. Yang, C. Liang, and H. Wang, Opt. Express 16,11259(2008).ADSCrossRefGoogle Scholar
  60. 60.
    A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102,234301(2009).ADSCrossRefGoogle Scholar
  61. 61.
    B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17,3642(2005).CrossRefGoogle Scholar
  62. 62.
    Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, Solar Energy Mater. Solar Cells 93,85(2009).ADSCrossRefGoogle Scholar
  63. 63.
    C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, Appl. Phys. B 100,547(2010).ADSCrossRefGoogle Scholar
  64. 64.
    H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, Terahertz Sci. Technol. 3,66(2010).Google Scholar
  65. 65.
    S.-G. Lee, J.-S. Choi, J.-E. Kim, and H. Y. Park, Opt. Express 16,4270(2008).ADSCrossRefGoogle Scholar
  66. 66.
    J.-M. Park, S.-G. Lee, H.-R. Park, and M.-H. Lee, Opt. Express 18,13083(2010).ADSCrossRefGoogle Scholar
  67. 67.
    A. S. Shalin, JETP Lett. 91,636(2010).ADSCrossRefGoogle Scholar
  68. 68.
    A. S. Shalin, J. Commun. Technol. Electron. 56,14(2011).CrossRefGoogle Scholar
  69. 69.
    A. S. Shalin, Quantum Electron. 41,163(2011).ADSCrossRefGoogle Scholar
  70. 70.
    A. S. Shalin, Progr. Electromagn. Res. B 31,45(2011).CrossRefGoogle Scholar
  71. 71.
    A. S. Shalin and S. A. Nikitov, Progr. Electromagn. Res. B 47,127(2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. V. Baryshnikova
    • 1
  • A. S. Kadochkin
    • 2
  • A. S. Shalin
    • 1
    • 2
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Ulyanovsk State UniversityUlyanovskRussia
  3. 3.Kotel’nikov Institute of Radio Engineering and Electronics, Ulyanovsk BranchRussian Academy of SciencesUlyanovskRussia

Personalised recommendations