Optics and Spectroscopy

, Volume 119, Issue 2, pp 202–207 | Cite as

Study of the Rb D 2-line splitting in a strong transverse magnetic field with Doppler-free spectroscopy in a nanocell

  • A. Sargsyan
  • G. Hakhumyan
  • A. Tonoyan
  • P. A. Petrov
  • T. A. Vartanyan
Spectroscopy of Atoms and Molecules


Atomic transitions of 85Rb and 87Rb isotopes in a strong transverse magnetic field with induction of up to 7 kG have been studied experimentally. High spectral resolution is achieved owing to the application of the linear Doppler-free spectroscopy method to a nanometric thin cell with the thickness of L = λ/2 = 390 nm, where λ is the wavelength of laser emission tuned to the resonance with the Rb D 2-line (λ/2-method). It has been observed that the number of atomic transitions in the transmission spectrum of linearly polarized (π) radiation decreases from 64 down to 20 transitions as the field strength increases above B > 5 kG. Four atomic transitions (two of 85Rb and two of 87Rb), which are forbidden in the absence of magnetic field, acquire significant strength in the strong magnetic field. Experimental results are in a good agreement with theory. Several practical applications of alkali-vapor-filled nanometric thin cells have been proposed.


Strong Magnetic Field Hyperfine Structure Laser Emission Atomic Transition 87Rb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Tremblay, A. Michaud, M. Levesque, et al., Phys. Rev. A 42, 2766 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference of Atomic States (Nauka, Moscow, 1991) [in Russian].Google Scholar
  3. 3.
    M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding of Light–Atom Interactions (Oxford Univ. Press, Oxford, 2010).Google Scholar
  4. 4.
    B. A. Olsen, B. Patton, Y. -Y. Jau, et al., Phys. Rev. A 84, 063410 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A. Sargsyan, G. Hakhumyan, C. Leroy, et al., Opt. Lett. 37, 1379 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    L. Weller, K. S. Kleinbach, M. A. Zentile, et al., Opt. Lett. 37, 3405 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 98, 441 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    A. Sargsyan, A. Tonoyan, R. Mirzoyan, et al., Opt. Lett. 39, 2270 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    A. Sargsyan, A. Tonoyan, G. Hakhumyan, et al., Las. Phys. Lett 11, 055701 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    A. Sargsyan, G. Hakhumyan, A. Papoyan, and D. Sarkisyan, JETP Lett. 101, 303 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    G. Hakhumyan, D. Sarkisyan, A. Sargsyan, A. Atvars, and M. Auzinsh, Opt. Spectrosc. 108 (5), 685 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Zentile, R. Andrews, L. Weller, et al., J. Phys. B 47, 075005 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    D. A. Steck, Alkali D line data, available from: Scholar
  14. 14.
    M. A. Zentile, J. S. Keaveney, L. Weller, et al., Comput. Phys. Commun. 189, 162 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    R. H. Romer and R. H. Dicke, Phys. Rev. 99, 532 (1955).ADSCrossRefGoogle Scholar
  16. 16.
    T. A. Vartanyan and D. L. Lin, Phys. Rev. A 51, 1959 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    J. Keaveney, A. Sargsyan, U. Krohn, et al., Phys. Rev. Lett. 108, 173601 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    L. Weller, K. S. Kleinbach, M. A. Zentile, et al., Phys. B: At. Mol. Opt. Phys. 45, 215005 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, et al., Opt. Commun. 284, 4007 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    A. Sargsyan, A. Tonoyan, G. Hakhumyan, et al., Opt. Commun. 334, 208 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    C. Umfer, L. Windholz, and M. Musso, Z. Phys. D 25, 23 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    S. Werbowy, J. Kwela, N. Anjum, et al., Phys. Rev. A 90, 032515 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Sargsyan, B. Glushko, and D. Sarkisyan, JETP 120, 579 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. Sargsyan
    • 1
  • G. Hakhumyan
    • 1
  • A. Tonoyan
    • 1
  • P. A. Petrov
    • 2
  • T. A. Vartanyan
    • 2
  1. 1.Institute for Physical ResearchArmenian National Academy of SciencesAshtarakArmenia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations