Optics and Spectroscopy

, Volume 119, Issue 2, pp 229–233 | Cite as

Kinetics and luminescence of cadmium sulfide quantum dots in fluorine-phosphate glasses

Condensed-Matter Spectroscopy

Abstract

Fluorine-phosphate glasses activated with cadmium sulfide quantum dots (QDs) have been investigated. QDs of different sizes (2.8, 3.0, and 3.8 nm in diameter) have been formed as a result of heat treatment near the glass-formation temperature. This variation in the QD size leads to a red shift of the fundamental absorption edge (459 nm) and luminescence band (859 nm). A dependence of the excited state lifetime on the recording wavelength in the range of 450–700 nm is revealed. It is shown that an increase in the QD size from 2.8 to 3.8 nm makes the excited state lifetime longer. The quantum yield increases from 16.3 to 33.7% with an increase in the QD size.

References

  1. 1.
    A. Rogach, Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Application (Springer, Wien, 2008), p. 372.CrossRefGoogle Scholar
  2. 2.
    C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Phys. Chem. B 106 (31), 7619 (2002).CrossRefGoogle Scholar
  3. 3.
    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105 (4), 1025 (2005).CrossRefGoogle Scholar
  4. 4.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg., 2011) [in Russian].Google Scholar
  5. 5.
    S. V. Rempel’, A. A. Razvodov, M. S. Nebogatikov, E. V. Shishkina, V. Ya. Shur, and A. A. Rempel’, Phys. Solid State 55 (3), 624 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    A. Smith, S. Nie, and B. A. Kairdolf, RF Patent No. 2497746 (2013).Google Scholar
  7. 7.
    D. Talapin and C. Murray, Science 310, 86 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Kolobkova. E. V. Lipovskii and V. D. Petrikov, Fiz. Tverd. Tela 40 (5), 862 (1998).Google Scholar
  9. 9.
    E. V. Kolobkova, N. V. Nikonorov, and V. A. Aseev, Nauchn. Tekh. Vestn. Inf. Tekhnol., Mekh., Opt., No. 5 (81), 1 (2012).Google Scholar
  10. 10.
    J. L. Martin, R. Riera, and S. A. Cruz, J. Phys.: Cond. Matter 10, 1349 (1998).ADSGoogle Scholar
  11. 11.
    k Kim Jae, Kim Jongmin, Lee Junhee, Jung Dae-Ryong, Kim Hoechang, Choi Hongsik, Lee Sungjun, Sujin Byun, Kang Suji, and Park Byungwoo, Nanoscale Res. Lett. 7, 482 (2012).CrossRefGoogle Scholar
  12. 12.
    E. K. Volkova and V. I. Kochubei, Izv. Samarskogo Nauchn. Tsentra Ross. Akad. Nauk 12 (4), 113 (2010).Google Scholar
  13. 13.
    A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmuller, J. Phys. Chem. B 103 (46), 10109 (1999).CrossRefGoogle Scholar
  14. 14.
    K. I. Yumashev, A. N. Malyarevich, N. N. Posnov, V. P. Mikhailov, A. A. Lipovskii, E. V. Kolobkova, and V. D. Petrikov, Kvantovaya Elektron. 25 (8), 735 (1998).Google Scholar
  15. 15.
    A. I. Ekimov and A. A. Onushchenko, Fiz. Tekh. Poluprovodn. 10 (7), 1215 (1992).Google Scholar
  16. 16.
    M. S. Smirnov, O. V. Ovchinnikov, A. G. Vitukhnovsky, S. A. Ambrozhevitch, A. V. Katsaba, and T. S. Shatskikh, Proc. Int. Conf. “Nanomaterials: Applications and Properties,” 2013, Vol. 2, No. 3, p. 3.Google Scholar
  17. 17.
    A. P. Litvin, P. S. Parfenov, E. V. Ushakova, and A. V. Baranov, Nauchn. Tekh. Vestn. Inf. Tekhnol., Mekh., Opt., No. 5(81), 32 (2012).Google Scholar
  18. 18.
    W. Yu. William, Ch. Emmanuel, D. Rebekah, and L. Colvin Vicki, Biochem. Biophys. Res. Commun. 348, 781 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Zh. O. Lipatova
    • 1
  • E. V. Kolobkova
    • 1
  • V. A. Aseev
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations