Optics and Spectroscopy

, Volume 119, Issue 2, pp 234–237 | Cite as

The influence of the conditions of ion exchange in CuSO4:Na2SO4 melt on the optical properties of surface layers of silicate glass

  • I. A. Demichev
  • A. I. Sidorov
  • N. V. Nikonorov
Condensed-Matter Spectroscopy

Abstract

The influence of the temperature and duration of ion exchange in BK7 silicate glass in CuSO4:Na2SO4 melt on the optical properties of the glass surface layers has been investigated. It is shown that ion exchange occurs from the melt according to the Cu2+ ↔ 2Na+ scheme. Cu2+ ions penetrate the sample to a depth of about 1 µm. Reduction of Cu2+ ions near the glass surface gives rise to the Cu+ ↔ Na+ ion exchange in the glass. Measurements of refractive index profiles in the glass sample subjected to ion exchange have revealed the formation of two waveguides in the sample: near the surface and at a depth of more than 3 µm; the second waveguide is formed by Cu+ ions. It is shown that relatively low temperatures and short durations of ion exchange lead to the formation of copper molecular clusters Cun in glass. An increase of ion exchange temperature and duration leads to decomposition of molecular clusters with formation of Cu2+ ions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Tervonen, B. R. West, and S. Honkanen, Opt. Eng. 50, 071107 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, J. Mod. Opt. 45, 837 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    H. Marquez, D. Salazar, A. Villalobos, G. Paez, and Rinco’n Ma, J. Appl. Opt. 34 (25), 5817 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    V. P. Afanas’ev, V. N. Vasil’ev, A. I. Ignat’ev, E. V. Kolobkova, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Opt. Zh. 80 (10), 69 (2013).Google Scholar
  5. 5.
    A. I. Ignat’ev, E. M. Sgibnev, I. A. Demichev, N. V. Nikonorov, A. I. Sidorov, T. A. Khrushcheva, and T. A. Shakhverdov, Opt. Spectrosc. 116 (4), 587 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, Opt. Mater. 36, 753 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    D. S. Agafonova, A. I. Sidorov, E. V. Kolobkova, A. I. Ignatiev, and N. V. Nikonorov, Proc. SPIE 9141, 91411T (2014).Google Scholar
  8. 8.
    B. C. Rowan, L. R. Wilson, and B. S. Richards, IEEE J. Sel. Top. Quantum Electron. 14 (5), 1312 (2008).CrossRefGoogle Scholar
  9. 9.
    I. Fanderlik, Optical Properties of Glass (Elsevier, Amsterdam, 1983).Google Scholar
  10. 10.
    J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    R. Oven, J. Appl. Phys. 100, 053513 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Mauricio, G. Battaglin, and E. Cattaruzza, Appl. Phys. A 81, 1065 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Fujimoto and M. Nakatsuka, J. Lumin. 75, 213 (1997).CrossRefGoogle Scholar
  14. 14.
    P. Nebolova, J. Spirkova, V. Perina, I. Jirka, K. Mach, and G. Kuncova, Solid State Ionics 141–142, 609 (2001).CrossRefGoogle Scholar
  15. 15.
    B. Moine, C. Pedrini, E. Duloisy, P. Boutinaud, C. Parent, and G. Le Flem, J. de Phys. IV 1, 289 (1991).Google Scholar
  16. 16.
    L. D. Bogomolova, V. A. Gan’shin, V. A. Jachkin, M. E. Kubrinskaya, and V. Z. Petrova, J. Non-Cryst. Solids 45, 249 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    S. Kumar, D. S. Rahman, A. L. Ali, and A. Kalita, Plasmonics 8, 1457 (2013).CrossRefGoogle Scholar
  18. 18.
    J. M. J. Santillán, F. A. Videla, L. B. Scaffardi, and D. C. Schinca, Plasmonics 8, 341 (2013).CrossRefGoogle Scholar
  19. 19.
    Y. Lu and W. Chen, Chem. Soc. Rev. 41, 3594 (2012).CrossRefGoogle Scholar
  20. 20.
    A. I. Ignat’ev, E. M. Sgibnev, I. A. Demichev, N. V. Nikonorov, A. I. Sidorov, T. A. Khrushcheva, and T. A. Shakhverdov, Opt. Spectrosc. 116 (4), 587 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    F. Gonella, A. Quaranta, E. Cattaruzza, S. Padovani, C. Sada, F. D’Acapito, and C. Maurizio, Comput. Mater. Sci. 33, 31 (2005).CrossRefGoogle Scholar
  22. 22.
    T. Yoko, T. Nishiwaki, K. Kamiya, and S. Sakka, J. Am. Ceram. Soc. 74, 1112 (1991).CrossRefGoogle Scholar
  23. 23.
    E. S. Frolov and V. E. Minaicheva, Vacuum Technique: A Handbook (Mashinostroenie, Moscow, 1985) [in Russian].Google Scholar
  24. 24.
    Yu. Kaganovskii, E. Mogilko, A. A. Lipovskii, and M. Rosenbluh, J. Phys.: Conf. Ser. 61, 508 (2007).ADSGoogle Scholar
  25. 25.
    P. A. Obraztsov, A. V. Nashchekin, N. V. Nikonorov, A. I. Sidorov, A. V. Panfilova, and P. N. Brunkov, Phys. Solid State 55 (6), 1272 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, Appl. Phys. A 81, 1065 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. A. Demichev
    • 1
  • A. I. Sidorov
    • 1
  • N. V. Nikonorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations