Optics and Spectroscopy

, Volume 119, Issue 1, pp 77–83 | Cite as

Direct evidence of energy transfer from a singlet ligand level to lanthanide ions in their diketonate complexes

  • L. Yu. Mironov
  • E. B. Sveshnikova
  • V. L. Ermolaev
Condensed-Matter Spectroscopy

Abstract

We have compared the fluorescence intensity of 2-naphthoyltrifluoroacetonate (NTA) in nanoparticles from Gd(NTA)3phen complexes with the fluorescence intensities of this compound in nanoparticles from similar complexes of Pr, Nd, Sm, Eu, Tb, Dy, Er, Ho, and Tm, which absorb in the NTA fluorescence range. We have proven that there is energy transfer from the S1 level of NTA ligands to Ln(III) ions, which occurs with rates ktr ∼ 1011–1012 s−1. We have also studied the competition between two processes: energy transfer from Ln(NTA)3phen to Ln(III) ions and energy transfer to Nile blue molecules incorporated into nanoparticles from complexes of these ions. It has been shown that, in nanoparticles from complexes of Nd(III), Tb(III), Dy(III), and Tm(III) ions, which are incapable of sensitizing the fluorescence of Nile blue, the values of ktr2 for the energy transfer from NTA to Ln(III) ions, which were obtained from the data on the change in the intensity of the sensitized fluorescence of Nile blue, completely coincide with the values of ktr1 determined from the fluorescence quenching of NTA in these nanoparticles. We have found that, in nanoparticles from Pr, Sm, Eu, Er, and Ho complexes, the efficiency of the sensitized fluorescence of Nile blue is higher than that predicted from the fluorescence quenching of NTA by these ions in their complexes, which indicates that all these ions participate as mediators in the energy transfer from ligands to the dye.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Ermolaev and T. A. Shakhverdov, Opt. Spektrosk. 26, 845 (1969).Google Scholar
  2. 2.
    T. A. Shakhverdov, in Excited Molecules: Kinetics of Transformations, Ed. by A. A. Krasnovskii (Nauka, Leningrad, 1982) [in Russian].Google Scholar
  3. 3.
    G. A. Hebbink, S. I. Klink, L. Grave, P. G. Alink, G. B. Patrick, O. Alink, and F. C. J. M. van Veggel, Chem. Phys. Chem. 3, 1014 (2002).Google Scholar
  4. 4.
    K. Binnemans, Chem. Rev. 109(9), 4283 (2009).CrossRefGoogle Scholar
  5. 5.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Electronic Excitation Energy Transfer (Nauka, Leningrad, 1977) [in Russian].Google Scholar
  6. 6.
    T. Ohno and Sh. Kato, Bull. Chem. Soc. Jpn. 47, 1974 (1974).Google Scholar
  7. 7.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 117(6), 896 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    G. A. Crosby, R. E. Whan, and R. M. Alire, J. Chem. Phys. 34, 743 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    S. M. Bruno, Microporous Mesoporous Mater 113, 453 (2008).CrossRefGoogle Scholar
  10. 10.
    S. S. Dudar’, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 104(5), 724 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 81, 769 (2012).CrossRefGoogle Scholar
  12. 12.
    E. B. Sveshnikova, L. Yu. Mironov, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 113(6), 607 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    E. B. Sveshnikova, S. S. Dudar’, L. Yu. Mironov, and V. L. Ermolaev, Opt. Spectrosc. 113(2), 115 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 116(6), 933 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    V. M. Peshkova and N. V. Mel’chakova, β-Diketones (Analytical Reagents) (Nauka, Moscow, 1986) [in Russian].Google Scholar
  16. 16.
    E. B. Sveshnikova and V. L. Ermolaev, Opt. Spectrosc. 111(1), 34 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 63(11), 905 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    A. I. Voloshin, N. M. Shavaleev, and V. P. Kazakov, J. Lumin. 93, 199 (2001).CrossRefGoogle Scholar
  19. 19.
    S. Sato and M. Wada, Bull. Chem. Soc. Jpn. 43, 1955 (1970).CrossRefGoogle Scholar
  20. 20.
    E. B. Sveshnikova and N. T. Timofeev, Opt. Spektrosk. 48, 503 (1980).Google Scholar
  21. 21.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice-Hall, Englewood Cliffs, 1969).Google Scholar
  22. 22.
    A. Zaim, H. Nozary, L. Guenee, C. Besnad, et al., Chem. Europ. J. 18, 7155 (2012).CrossRefGoogle Scholar
  23. 23.
    K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneider, Jr., J.-C. G. Bunzli, and V. K. Percharsky (Elsevier, Amsterdam, 2005), Vol. 35, Chap. 225, pp. 197–272.Google Scholar
  24. 24.
    M. Kleinerman, J. Chem. Phys. 51(6), 2370 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. Yu. Mironov
    • 1
  • E. B. Sveshnikova
    • 1
  • V. L. Ermolaev
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations