Optics and Spectroscopy

, Volume 118, Issue 6, pp 1017–1022 | Cite as

Metrological problems of gas analyzers based on wavelength-scanned cavity ring-down spectroscopy

  • L. A. Konopel’ko
  • V. V. Beloborodov
  • D. V. Rumyantsev
  • Ya. K. Chubchenko
  • V. V. Elizarov
Geometrical and Applied Optics

Abstract

Wavelength-scanned cavity ring-down spectroscopy (WS CRDS) is used in gas analysis. Calibration gas mixtures containing carbon monoxide, carbon-12 dioxide, carbon-13 dioxide, methane, and formaldehyde are used to determine the metrological characteristics of WS CRDS gas analyzers. Most experimental results are in agreement with the declared data. For gas mixtures in which the gas matrix differs from air, the broadening of spectral lines related to the interaction of particles causes significant errors in the concentration measurements. Such effects that neutralize the advantages of the WS CRDS method are studied in this work. The coefficients that can be used to correct the results of the WS CRDS gas analyzers and compensate for errors related to different gas matrices are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Jost, A. Castrillo, and H. Wilson, Isotopes Environ. Health Stud. 42(1), 37 (2006).CrossRefGoogle Scholar
  2. 2.
    E. Wahl et al., Isotopes Environ. Health Stud. 42(1), 21 (2006).CrossRefGoogle Scholar
  3. 3.
    E. Wahl and S. Tan, Opt. Express 14(4), 1673 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Dmitrienko, Prakt. Med. 11(1), 192 (2014).Google Scholar
  5. 5.
  6. 6.
    A. Barrado et al., Arch. Latinoam. Nutricion 54(4), 27 (2004).Google Scholar
  7. 7.
    E. Crosson et al., Anal. Chem. 74(9), 2003 (2002).CrossRefGoogle Scholar
  8. 8.
  9. 9.
    H. Nara, H. Tanimoto, and Y. Tohjima, Atmos. Meas. Tech. 5(11), 2689 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Wheeler et al., J. Chem. Soc. Faraday Trans. 94(3), 337 (1998).CrossRefGoogle Scholar
  11. 11.
    H. Chen, A. Karion, C. Rella, and J. Winderlich, Atmos. Meas. Tech. 6(4), 1031 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Chen et al., Atmos. Meas. Tech. 3(2), 375 (2010).CrossRefGoogle Scholar
  13. 13.
    B. Joshua, L. Lapson, and J. Anderson, Appl. Opt. 40(27), 4904 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    F. Gernot et al., Limnol. Oceanogr. Methods 8(10), 539 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Okeefe and Dag. Deacon, Rev. Sci. Instrum. 59(12), 2544 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    M. Mazurenka, A. Orr-Ewing, R. Peverall, and G. Ritchie, Phys. Chem. Ann. Rep. Prog. Chem. Sec. C 101, 100 (2005).CrossRefGoogle Scholar
  17. 17.
    GOST (State Standard) No. 8.578.Google Scholar
  18. 18.
  19. 19.
    A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentine, J. Quant. Spectrosc. Radiat. Transfer 56(5), 647 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. A. Konopel’ko
    • 1
  • V. V. Beloborodov
    • 1
    • 2
  • D. V. Rumyantsev
    • 1
  • Ya. K. Chubchenko
    • 1
  • V. V. Elizarov
    • 2
  1. 1.Mendeleev Institute for MetrologySt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations