Optics and Spectroscopy

, Volume 118, Issue 3, pp 393–411 | Cite as

Luminescence self-quenching in praseodymium-doped double sodium-yttrium fluoride cubic crystals (Na0.4Y0.6F2.2:Pr3+)

  • A. M. Tkachuk
  • S. E. Ivanova
  • A. A. Mirzaeva
  • M. -F. Joubert
  • Y. Guyot
Condensed-Matter Spectroscopy
  • 86 Downloads

Abstract

Energy transfer processes between praseodymium dopant ions, which are responsible for the luminescence self-quenching in crystals Na0.4Y0.6F2.2:Pr3+ (NYF:Pr3+; Pr = 0.4–9%), have been investigated experimentally and theoretically. Using methods of kinetic spectroscopy with selective excitation, the praseodymium luminescence decay kinetics from the levels 3P0,1 and 1D2 selectively excited by nanosecond laser pulses has been studied. Based on model quantum-mechanical calculations, interionic interaction microparameters have been determined theoretically and mechanisms that are responsible for the interaction of praseodymium ions by particular most likely energy transfer schemes have been elucidated. Energy transfer macrorates (of migration and quenching) have been found, and the values obtained have been used as parameters for calculation of the decay dynamics of the excited 1D2 and 3P0,1 levels of praseodymium ions. It has been shown that luminescence self-quenching from the 1D2 level in NYF:Pr3+ crystals can be described well in terms of the model of static ordered decay in the presence of dipole-dipole and dipole-quadrupole interactions. The luminescence self-quenching from the 3P0,1 levels is mainly determined by the dipole-dipole interaction, and it also can be described in terms of the model of the static ordered decay. Good agreement has been obtained between experimental and calculated kinetic dependences that characterize energy transfer processes in NYF:Pr3+ crystals in relation to the concentration of doping ions. Based on the obtained data, it has been concluded that investigated crystals of a certain composition are promising for use in quantum electronics and optical converters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Sommerdijk, A. Bril, and A. W. de Jager, J. Luminesc. 8(4), 341 (1974).CrossRefGoogle Scholar
  2. 2.
    T. Sandrock, E. Heumann, G. Huber, and B. H. T. Chai, in Advanced Solid-State Lasers Conference, Ed. by S. A. Payne and C. Pollack (OSA TOP, 1996), Vol. 1, pp. 550–553.Google Scholar
  3. 3.
    P. W. Binun, T. L. Boyd, M. A. Pessot, D. H. Tanimoto, D. E. Hargis, Opt. Lett. 21(23), 1915 (1996).CrossRefADSGoogle Scholar
  4. 4.
    A. A. Kaminskii, A. I. Lyashenko, N. P. Isaev, V. N. Karlov, V. L. Pavlovich, S. N. Bagaev, A. V. Butashin, and L. E. Li, Quantum Electron. 28, 187 (1998).CrossRefADSGoogle Scholar
  5. 5.
    E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, Appl. Phys. Lett. 82, 3832 (2003).CrossRefADSGoogle Scholar
  6. 6.
    H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, Opt. Mater. 26, 365 (2004).CrossRefADSGoogle Scholar
  7. 7.
    A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, Opt. Lett. 29, 2638 (2004).CrossRefADSGoogle Scholar
  8. 8.
    A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, and W. Seelert, Opt. Express 14, 3282 (2006).CrossRefADSGoogle Scholar
  9. 9.
    F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, Opt. Express 15, 992 (2007).CrossRefADSGoogle Scholar
  10. 10.
    A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, Opt. Express 15(3), 5172 (2007).CrossRefADSGoogle Scholar
  11. 11.
    P. Camy, J. L. Doualan, R. Moncorge, J. Bengoechea, and U. Weichmann, Opt. Lett. 32, 1462 (2007).CrossRefADSGoogle Scholar
  12. 12.
    N. O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, Appl. Opt. 49(20), 3864 (2010).CrossRefADSGoogle Scholar
  13. 13.
    F. Cornacchia, A. Di Lieto, M. Tonelli, A. Richter, E. Heumann, and G. Huber, Opt. Express 16(20), 15932 (2008).CrossRefADSGoogle Scholar
  14. 14.
    A. Richter, Ph. D. Thesis (University of Hamburg, Göttingen, 2008).Google Scholar
  15. 15.
    M. Fechner, N.-O. Hansen, A. Richter, E. Heumann, and G. Huber, EPS-QEOD Europhoton Conference (Talk FROA 1,Paris, 2008).Google Scholar
  16. 16.
    T. Gun, P. Metz, and G. Huber, Opt. Lett. 36(6), 1002 (2011).CrossRefADSGoogle Scholar
  17. 17.
    B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorge, Opt. Express 19(2), 1191 (2011).CrossRefADSGoogle Scholar
  18. 18.
    T. Trupke and M. A. Green, J. Appl. Phys. 92(3), 1668 (2002).CrossRefADSGoogle Scholar
  19. 19.
    C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91(4), 238 (2007).CrossRefGoogle Scholar
  20. 20.
    J. T. Van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, Phys. Rev. 81, 155112 (2010).CrossRefGoogle Scholar
  21. 21.
    D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Menard, and R. Moncorge, Opt. Mater. (2010). DOI: 10.1016/j.optmat.2010.07.023Google Scholar
  22. 22.
    S. E. Ivanova, A. M. Tkachuk, M.-F. Joubert, Y. Guyot, and S. Guy, Opt. Spectrosc. 89(4), 535 (2000).CrossRefADSGoogle Scholar
  23. 23.
    D. N. Karminov, M. Kirm, V. N. Markov, T. V. Ouvarova, S. Vielhauer, and G. Zimmerer, Opt. Mater. 16, 437 (2001).CrossRefADSGoogle Scholar
  24. 24.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, J. Alloys Comp. 380, 130 (2004).CrossRefGoogle Scholar
  25. 25.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, Opt. Spectrosc. 97(2), 251 (2004).CrossRefADSGoogle Scholar
  26. 26.
    S. E. Ivanova, A. M. Tkachuk, M.-F. Joubert, Y. Guyot, V. P. Gapontsev, OSA TOPS ASSP 98, 80 (2005).Google Scholar
  27. 27.
    A. M. Tkachuk, S. E. Ivanova, G. E. Novikov, and V. P. Gapontzev, in Proceedings of the MICS Conference (2009), PO9, pp. 1–4.Google Scholar
  28. 28.
    S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105(2), 228 (2008).CrossRefADSGoogle Scholar
  29. 29.
    A. M. Tkachuk, S. E. Ivanova, A. A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 111(6), 919 (2011).CrossRefGoogle Scholar
  30. 30.
    H. Chou, P. Albers, A. Cassanho, and H. P. Jenssen, Springer Series. Opt. Sci. 6(9), 325 (1986).Google Scholar
  31. 31.
    Kh. S. Bagdasarov, A. A. Kaminskii, and B. P. Sobolev, Kristallografiya 13, 779 (1969).Google Scholar
  32. 32.
    A. M. Tkachuk, S. E. Ivanova, A. A. Mirzaeva, M.-F. Joubert, and Y. Guyot, Opt. Spectrosc. 116(3), 392 (2014).CrossRefADSGoogle Scholar
  33. 33.
    Yu. E. Perlin, A. M. Tkachuk, and S. I. Klokishner, Opt. Cpektrosk. 55, 3 (1983).ADSGoogle Scholar
  34. 34.
    A. M. Tkachuk, S. I. Klokishner, and M. V. Petrov, Opt. Spektrosk. 59,(4), 802 (1985).Google Scholar
  35. 35.
    A. M. Tkachuk and S. I. Klokishner, Opt. Spektrosk. 61, 84 (1986).Google Scholar
  36. 36.
    S. I. Klokishner and A. M. Tkachuk, Opt. Spektrosk. 68, 745 (1990).Google Scholar
  37. 37.
    A. M. Tkachuk, Opt. Spektrosk. 68, 1324 (1990).Google Scholar
  38. 38.
    A. M. Tkachuk, I. K. Razumova, M.-F. Joubert, R. Moncorge, D. I. Mironov, and A. A. Nikitichev, Opt. Spectrosc. 85(6), 965 (1998).Google Scholar
  39. 39.
    A. M. Tkachuk, I. K. Razumova, E. Yu. Perlin, M.-F. Joubert, R. Moncorge, Opt. Spectrosc. 90(1), 78 (2001).CrossRefADSGoogle Scholar
  40. 40.
    A. M. Tkachuk, S. I. Klokishner, A. V. Poletimova, L. M. Mogileva, and M. V. Petrov, Opt. Spektrosk. 60, 1201 (1986).Google Scholar
  41. 41.
    A. M. Tkachuk, Izv. Akad. Nauk SSSR 49(10), 1959 (1985).MathSciNetGoogle Scholar
  42. 42.
    A. M. Tkachuk, S. I. Klokishner, A. V. Poletimova, et al., Opt. Spektrosk. 59, 1239 (1985).Google Scholar
  43. 43.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, J. Lumin. 94–95, 343 (2001).CrossRefGoogle Scholar
  44. 44.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, Opt. Spectrosc. 99(6), 932 (2005).CrossRefADSGoogle Scholar
  45. 45.
    S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spektrosk. 106(6), 836 (2009).CrossRefADSGoogle Scholar
  46. 46.
    A. M. Tkachuk, A. V. Poletimova, M. A. Petrova, V. Yu. Egorov, and N. E. Korolev, Opt. Spektrosk. 70, 1230 (1991).Google Scholar
  47. 47.
    M. V. Zamoryanskaya, L. G. Morozova, A. V. Poletimova, et al., Zh. Prikl. Spektrosk. 55(6), 1010 (1991).Google Scholar
  48. 48.
    A. I. Burshtein, Zh. Eksp. Teor. Fiz. 84, 2001 (1983).Google Scholar
  49. 49.
    A. I. Burshtein and V. P. Sackun, Chem. Phys. Lett. 103, 205 (1983).CrossRefADSGoogle Scholar
  50. 50.
    B. E. Vugmeister, Fiz. Tverd. Tela 25, 2796 (1983).Google Scholar
  51. 51.
    Yu. K. Voron’ko, T. G. Mamedov, and V. V. Osiko, Zh. Eksp. Teor. Fiz. 71(2), 478 (1976).ADSGoogle Scholar
  52. 52.
    T. Kushida, Izv. Akad. Nauk SSSR 37(2), 273 (1973).Google Scholar
  53. 53.
    M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965).CrossRefADSGoogle Scholar
  54. 54.
    J. C. W. Grant, Phys. Rev. B 4, 648 (1971).CrossRefADSGoogle Scholar
  55. 55.
    I. A. Bondar’, A. I. Burshtein, A. V. Krutikov, et al., Zh. Eksp. Teor. Fiz. 81(1), 6 (1981).Google Scholar
  56. 56.
    Th. Forster, Ann. Phys. (New York) 2, 55 (1948).ADSGoogle Scholar
  57. 57.
    D. I. Dexter, J. Chem. Phys. 21(5), 836 (1953).CrossRefADSGoogle Scholar
  58. 58.
    E. N. Bodunov and V. A. Malyshev, Opt. Spektrosk. 62, 1280 (1987).Google Scholar
  59. 59.
    E. N. Bodunov, Opt. Spektrosk. 73, 518 (1993).Google Scholar
  60. 60.
    E. N. Bodunov, Opt. Spectrosc. 81, 365 (1996).ADSGoogle Scholar
  61. 61.
    S. I. Boldyrev, R. V. Dumbrovyanu, and Yu. E. Perlin, Fiz. Tverd. Tela 23, 787 (1981).Google Scholar
  62. 62.
    V. Ya. Gamurar’, Yu. E. Perlin, and B. S. Tsukerblat, Fiz. Tverd. Tela 11(5), 1193 (1968).Google Scholar
  63. 63.
    B. R. Judd, Phys. Rev. 127, 750 (1963).CrossRefADSGoogle Scholar
  64. 64.
    G. S. Ofelt, J. Chem. Phys. 37(3), 511 (1962).CrossRefADSGoogle Scholar
  65. 65.
    V. A. Malyshev, in Spectroscopy of Crystals (Nauka, Leningrad, 1985), pp. 100–117 [in Russian].Google Scholar
  66. 66.
    Yu. E. J. Perlin, J. Lumin. 21, 119 (1979).CrossRefGoogle Scholar
  67. 67.
    M. G. Blazha, D. I. Vylegzhanin, and A. A. Kaminskii, Izv. Akad. Nauk SSSR 40(9), 1851 (1976).Google Scholar
  68. 68.
    A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, Opt. Lett. 29(22), 2638 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. M. Tkachuk
    • 1
  • S. E. Ivanova
    • 1
  • A. A. Mirzaeva
    • 2
  • M. -F. Joubert
    • 3
  • Y. Guyot
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Vavilov State Optical InstituteSt. PetersburgRussia
  3. 3.Institut Lumière Matière, UMR5306 Université Lyon 1-CNRSUniversité de LyonVilleurbanne cedexFrance

Personalised recommendations