Optics and Spectroscopy

, Volume 117, Issue 6, pp 977–983 | Cite as

Application of a volume holographic grating in a CaF2 crystal for measuring linear displacements with nanoscale accuracy

  • A. S. Shcheulin
  • A. E. Angervaks
  • A. K. Kupchikov
  • E. B. Verkhovskii
  • A. I. Ryskin
Holography

Abstract

A holographic method for measuring linear displacements based on the use of a highly stable volume scale hologram recorded in an additively colored calcium fluoride crystal with photochromic color centers is proposed and experimentally approved. The essence of this method lies in measuring and analyzing harmonic signals formed during linear displacement of crystal with a volume hologram in an external interference field. A physical model of the formation of harmonic signals in photodetectors when measuring displacements is considered, and a mathematical method for calculating linear displacements by plotting a Lissajous figure is substantiated. A laboratory breadboard of a device for measuring linear displacements in a range of 10 mm, limited by the aperture of crystal with a recorded 8.7-mm-thick hologram, is designed. When using a scale hologram with a period of 2.18 μm and a 632.8-nm He-Ne laser for reading this hologram, the error in measuring displacements by this method is 9 nm at a resolution of 3 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hirai, M. Kajima, and S. Telada, Handbook of Optical Metrology. Principles and Applications, Ed. by T. Yoshizawa (CRC Press, Boca Raton, 2009), p. 393.Google Scholar
  2. 2.
    B. G. Turukhano and N. Turukhano, J. Opt. Technol. 69(8), 579 (2002).CrossRefGoogle Scholar
  3. 3.
    B. G. Turukhano, N. Turukhano, and E. A. Vilkov, Komp. Opt. 35(2), 145 (2011).Google Scholar
  4. 4.
  5. 5.
    J. Guild, Diffraction Gratings As Measuring Scales (Oxford Univ. Press, London, 1960).Google Scholar
  6. 6.
    P. L. M. Heydemann, Appl. Opt. 20(19), 3382 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    K. P. Birch, Precis. Eng. 12(4), 195 (1990).CrossRefMathSciNetGoogle Scholar
  8. 8.
    L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A. Beléndez, Opt. Lett. 26(11), 786 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, Opt. Spectrosc. 113(6), 638 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, J. Opt. Soc. Am. B 31(2), 248 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, J. Opt. Soc. Am. B 29(3), 335 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. S. Shcheulin
    • 1
  • A. E. Angervaks
    • 1
  • A. K. Kupchikov
    • 1
  • E. B. Verkhovskii
    • 1
  • A. I. Ryskin
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations