Optics and Spectroscopy

, Volume 117, Issue 6, pp 855–860 | Cite as

States of a quantum particle exhibiting complex quasi-energy in a dynamic trap

Spectroscopy of Atoms and Molecules

Abstract

States of a single quantum particle in a one-dimensional dynamic trap, which correspond to complex values of quasi-energy, are found. The trap is described by a square potential well with periodic smallamplitude oscillations of barrier position. The specific feature of the problem is the fact that the dynamic trap affords simultaneous localization and excitation of the confined particle. The complex nature of the quasienergy is caused by finite probability of particle escape from the trap due to finite depth of the potential well. Within the framework of the second-order perturbation theory with respect to modulation depth, the dependence of the decay rate of the states on modulation frequency is determined, which proves to be nonmonotonic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 51, 1492 (1966).Google Scholar
  2. 2.
    J. H. Shirley, Phys. Rev. 138, B979 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    V. I. Ritus, Zh. Eksp. Teor. Fiz. 51, 1544 (1966).Google Scholar
  4. 4.
    I. J. Berson, J. Phys. 8, 3078 (1975).ADSGoogle Scholar
  5. 5.
    N. L. Manakov and L. P. Rapoport, Zh. Eksp. Teor. Fiz. 69, 842 (1975).Google Scholar
  6. 6.
    V. D. Mur, S. G. Pozdnyakov, V. S. Popov, and S. V. Po- pruzhenko, JETP Lett. 75, 249 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    V. D. Mur, S. G. Pozdnyakov, S. V. Popruzhenko, and V. S. Popov, Yad. Fiz. 66(11), 2014 (2003).Google Scholar
  8. 8.
    P. E. Toshek, Usp. Fiz. Nauk 158, 451 (1989).CrossRefGoogle Scholar
  9. 9.
    N. N. Rozanov and G. B. Sochilin, J. Exp. Theor. Phys. 118, 124 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    N. N. Rosanov, Phys. Rev. A 88, 063616 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    N. N. Rosanov, Phys. Rev. A 89, 035601 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd ed. (Nauka, Moscow, 1974; Butterworth-Heinemann, London, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Ioffe Physical Technical Institute of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations