Optics and Spectroscopy

, Volume 117, Issue 6, pp 896–907 | Cite as

Fluorescence enhancement of dyes embedded in nanoparticles of Lu, Eu, Al, and Sc diketonates of different composition and concentration

  • L. Yu. Mironov
  • E. B. Sveshnikova
  • V. L. Ermolaev
Condensed-Matter Spectroscopy

Abstract

We have studied the effect of central ions (Lu(III), Eu(III), Sc(III), and Al(III)), organic ligands (2-naphthoyltrifluoroacetone (NTA) and p-phenylbenzoyltrifluoroacetone (PhBTA)), and their concentration in a water-alcohol solution on the fluorescence of β-diketonate complexes formed and nanoparticles (NPs) generated by the self-assembly of these complexes. The fluorescence quenching of ligands of the complexes of nanoparticles because of the introduction of molecules of dyes, such as Nile Blue (NB), Lissamine Rhodamine RB-200 (RB), and Crystal Violet (CV), in these nanoparticles is investigated, and the NP-sensitization of the fluorescence of these dyes is explored. The dependence of the intensity of the NP-sensitized fluorescence of NB on its concentration in nanoparticles consisting of complexes that differ in composition and concentration is studied. By analyzing this dependence for the nanoparticles consisting of Sc(NTA)3, the size of the studied nanoparticles is evaluated. It is shown that the nature of this dependence is determined by a competition of two processes: the migration of the excitation energy over complexes to dyes and the migration of the excitation energy of dyes to impurities or dimer of dyes. The size of nanoparticles is compared to the estimated values of the exciton diffusion length and the critical radius of energy transfer from complexes to NB. An energy transfer of close to 100% from the nanoparticles formed of 10 μM of Sc(NTA)3 to 50 nM of NB molecules embedded therein is observed. The introduction of NB molecules into nanoparticles leads to a 200-fold increase in fluorescence intensity compared to their direct excitation in solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.-Y. Xu, I. A. Hemmila, and T. N. Lovgren, Analyst 117, 1061 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    J. Pecher and St. Mecking, Chem. Rev. 110, 6260 (2010).CrossRefGoogle Scholar
  3. 3.
    S. S. Dudar’, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 104(2), 225 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 81(9), 769 (2012).CrossRefGoogle Scholar
  5. 5.
    E. B. Sveshnikova, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 111(2), 302 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    E. B. Sveshnikova, L. Yu. Mironov, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 113(6), 607 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 116(6), 933 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 115(4), 508 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 115(1), 53 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. S. Dudar’, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 104(5), 724 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    A. S. Cherkasov, V. A. Molchanov, et al., Dokl. Akad. Nauk SSSR 109(2), 292 (1956).Google Scholar
  12. 12.
    H. Peng, Ch. Wu, Y. Jiang, Sn. Huang, and J. McNeil, Langmuir 23(4), 1591 (2007).CrossRefGoogle Scholar
  13. 13.
    E. B. Sveshnikova, S. S. Dudar’, S. N. Ageev, and V. L. Ermolaev, Opt. Spectrosc. 100(2), 228 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    X. Wang and M. Gao, J. Material Chem. 16, 1360 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    L. C. Groff, X. Wang, and D. McNeil, J. Phys. Chem. 117, 25748 (2013).Google Scholar
  16. 16.
    V. M. Peshkova and N. V. Mel’chakova, β-Diketones: Analytical Reagents (Nauka, Moscow, 1986) [in Russian].Google Scholar
  17. 17.
    E. B. Sveshnikova, S. S. Dudar’, L. Yu. Mironov, and V. L. Ermolaev, Opt. Spectrosc. 113(2), 115 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    I. Johnson and M. T. Z. Spence, Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technology, 11th ed. (Life Technologies, Carlsbad, CA, 2010).Google Scholar
  19. 19.
    E. B. Sveshnikova and V. L. Ermolaev, Opt. Spectrosc. 117(2), 220 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Media (Nauka, Moscow, 1978) [in Russian].Google Scholar
  21. 21.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Radiationless Electronic Excitation Energy Transfer (Nauka, Leningrad, 1977) [In Russian].Google Scholar
  22. 22.
    S. Hofmann, T. C. Rosenow, et al., Phys. Rev. B 85, 245209 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. Yu. Mironov
    • 1
  • E. B. Sveshnikova
    • 1
  • V. L. Ermolaev
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations