Optics and Spectroscopy

, Volume 117, Issue 6, pp 861–868 | Cite as

On the applicability of the one-dimensional model of diffusion ionization to the three-dimensional Rydberg hydrogen atom in a microwave field

  • D. K. Efimov
  • N. N. Bezuglov
  • A. N. Klyucharev
  • K. Miculis
Spectroscopy of Atoms and Molecules


The temporal dynamics of the three-dimensional hydrogen atom under the action of an external electric field is studied by using an analytic model and a numerical simulation. In the stationary case, analytic expressions for determining the evolution of angular momentum L of the Rydberg electron (RE) are obtained and significant oscillations of L are noted. Under conditions of the dynamical chaos regime stimulated by a linearly polarized microwave field, additional specific features of the evolution of L are found with the help of unification of the equations of motion and numerical calculations. The role of L in the formation of diffusion ionization of the RE is revealed.


Orbital Angular Momentum Diffusion Ionization Microwave Field Rydberg State Kepler Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Zaslavskii’ and R. Z. Sagdeev, Introduction to Nonlinear Physics (Nauka, Moscow, 1988) [in Russian].MATHGoogle Scholar
  2. 2.
    G. M. Zaslavskii, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov, Weak Chaos and Quasi-Regular Structures (Nauka, Moscow, 1991) [in Russian].CrossRefGoogle Scholar
  3. 3.
    A. L. Belov and V. P. Krainov, Zh. Eksp. Teor. Fiz. 92, 456 (1987).Google Scholar
  4. 4.
    A. S. Roshchupkin and V. P. Krainov, Zh. Eksp. Teor. Fiz. 114, 37 (1998).Google Scholar
  5. 5.
    N. N. Bezuglov, V. M. Borodin, A. Ekers, and A. N. Klyucharev, Opt. Spectrosc. 93(5), 661 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    V. P. Krainov, JETP 111, 171 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    C. Bracher, T. Kramer, and J. B. Delos, Phys. Rev. A 73, 062114 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    K. A. Mitchell and J. P. Handlay, et al., Phys. Rev. A 70, 043407 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    M. Yu. Zakharov, N. N. Bezuglov, A. N. Klyucharev, et al., Khim. Fiz. 30, 2 (2011).Google Scholar
  10. 10.
    E. I. Dashevskaya, I. Litvin, E. E. Nikitin, et al., Phys. Chem. Chem. Phys. 4, 3330 (2002).CrossRefGoogle Scholar
  11. 11.
    K. Miculis, I. I. Beterov, N. N. Bezuglov, et al., J. Phys. B: At. Mol. Opt. Phys. 38, 1811 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Ishkhanyan and V. P. Krainov, JETP 113, 407 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    N. B. Delone, V. P. Krainov, and D. L. Shepelyanskii, Usp. Fiz. Nauk 140, 335 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    D. U. Matrasulov, Phys. Rev. A. 60, 700 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989).CrossRefMATHGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshits, Mechanics (Pergamon Press, New York, 1969).Google Scholar
  17. 17.
    B. Kaulakys and G. Vilutis, Phys. Scr. 59, 251 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    M. Alaburda, V. Gontis, and B. Kaulakys, Interaction and Chaotic Dynamics of the Classical Hydrogen Atom in an Electromagnetic Field // arXiv:, 1001.0689v1[nlin.CD].Google Scholar
  19. 19.
    E. Hairer, Numerical Geometric Integration (Universite de Geneve, Geneve, 1999).Google Scholar
  20. 20.
    D. K. Efimov, N. N. Bezuglov, A. N. Klyucharev, et al., Opt. Spectrosc. 117, 8 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    G. S. Balaraman and D. Vrinceanu, Phys. Lett. A 369, 188 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    S. -I. Chua and D. A. Telnov, Phys. Rev. 390, 1.Google Scholar
  23. 23.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics: Non-relativistic Theory (Pergamon Press, New York, 1977).Google Scholar
  24. 24.
    V. S. Lisitsa, Usp. Fiz. Nauk 153, 379 (1987).CrossRefMathSciNetGoogle Scholar
  25. 25.
    N. B. Delone and V. P. Krainov, Nonlinear Ionization of Atoms by Laser Radiation (Fizmatgiz, Moscow, 2001) [in Russian].Google Scholar
  26. 26.
    G. V. Golubkov and A. Z. Devdariani, Khim. Fiz. No. 11, 31 (2011).Google Scholar
  27. 27.
    L. Moorman and D. Richards, Phys. Rev. Lett. 68, 468 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. K. Efimov
    • 1
    • 2
  • N. N. Bezuglov
    • 1
    • 2
  • A. N. Klyucharev
    • 1
    • 2
  • K. Miculis
    • 3
  1. 1.Physical FacultySt. Petersburg State UniversityPeterhof, St. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Laser CentreUniversity of LatviaRigaLatvia

Personalised recommendations