Optics and Spectroscopy

, Volume 117, Issue 5, pp 748–752 | Cite as

Raman scattering for lead telluride-based thin film structures

  • S. P. Zimin
  • E. S. Gorlachev
  • A. V. Baranov
  • S. A. Cherevkov
  • E. Abramof
  • P. H. O. Rappl
Condensed-Matter Spectroscopy

Abstract

For single-crystal epitaxial lead telluride films, Raman spectra obtained under conditions in which the intensity of incident radiation is minimized in order to suppress photo-initiated oxidative process are presented. The spectra were measured with an InVia Renishaw spectrometer at an exciting radiation wavelength of 514.5 nm and in-line focusing of a 20-μW beam. These measuring conditions allowed us for the first time to experimentally observe a large set of peaks for lead telluride, the positions of which were in line with the theoretical values of harmonics and combinatorial PbTe phonon modes. In order to demonstrate the possibilities of the methodology used, the picture of phonon modes for single-crystal and polycrystalline films of the Pb1 − xEuxTe (0.05 ⩽ x ⩽ 0.10) solution was additionally considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Weber and R. Merlin, Raman Scattering in Materials Science (Springer, Berlin, 2000).CrossRefGoogle Scholar
  2. 2.
    A. V. Baranov, Y. S. Bobovich, and V. I. Petrov, J. Raman Spectrosc. 24(11), 767 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    S. P. Zimin, E. S. Gorlachev, N. V. Gladysheva, V. V. Naumov, V. F. Gremenok, and Kh. G. Seidi, Opt. Spectrosc. 115(5), 679 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Batonneau, C. Brémard, J. Laureyns, and J. C. Merlin, J. Raman Spectrosc. 31, 1113 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    J. L. Blackburn, H. Chappell, J. M. Luther, A. J. Nozik, and J. C. Johnson, J. Phys. Chem. Lett. 2, 599 (2011).CrossRefGoogle Scholar
  6. 6.
    V. A. Volodin, M. P. Sinyukov, D. V. Shcheglov, A. V. Latyshev, and E. V. Fedosenko, Semiconductors 48(2), 173 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    L. Ao, L. Wang, and W. Wang, Micro Nano Lett. 7, 621 (2012).CrossRefGoogle Scholar
  8. 8.
    A. Bali, E. Royanian, E. Bauer, P. Rogl, and Mallik R. Chandra, J. Appl. Phys. 113, 123707 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Ovsyannikov, Y. S. Ponosov, V. V. Shchennikov, and V. E. Mogilenskikh, Phys. Stat. Sol. (c) 1(11), 3110 (2004).CrossRefGoogle Scholar
  10. 10.
    N. Romcevic, A. Golubovic, M. Romcevic, J. Trajic, S. Nikolic, S. Duric, and V. N. Nikiforov, J. Alloys Com. 402, 36 (2005).CrossRefGoogle Scholar
  11. 11.
    H. Wu, C. Cao, J. Si, T. Xu, H. Zhang, H. Wu, J. Chen, W. Shen, and N. Dai, J. Appl. Phys. 101, 103505 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, H. Zogg, E. Abramof, and P. H. O. Rappl, Semicond. Sci. Technol. 26, 105003 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    S. P. Zimin, E. A. Bogoyavlenskaya, E. S. Gorlachev, V. V. Naumov, D. S. Zimin, H. Zogg, and M. Arnold, Semicond. Sci. Technol. 22, 1317 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    M. L. Peres, R. M. Rubinger, L. H. Ribeiro, C. P. L. Rubinger, G. M. Ribeiro, V. A. Chitta, P. H. O. Rappl, and E. Abramof, J. Appl. Phys. 111, 123708 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    P. H. O. Rappl, H. Closs, S. O. Ferreira, E. Abramof, C. Boschetti, P. Motisuke, A. Y. Ueta, and I. N. Bandeira, J. Cryst. Growth 191, 466 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, and S. Tsharntke, Opt. Spectrosc. 109(2), 268 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    H. W. Leite Alves, A. R. R. Neto, L. M. R. Scolfaro, T. H. Myers, and P. D. Borges, Phys. Rev. B 87, 115204 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Bencherif, A. Boukra, A. Zaoui, and M. Ferhat, Infrared Phys. Technol. 54, 39 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    N. Romcevic, Z. V. Popovic, and D. R. Khokhlov, J. Phys.: Condens. Matter 7, 5105 (1995).ADSGoogle Scholar
  20. 20.
    E. S. Zhukova, N. P. Aksenov, B. P. Gorshunov, Yu. G. Selivanov, I. I. Zasavitskii, D. Wu, and M. Dressel, Phys. Solid State 53(4), 810 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    D. A. Pashkeev and I. I. Zasavitskii, Semiconductors 47(6), 755 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    M. Rahim, A. Khiar, F. Felder, M. Fill, and H. Zogg, Appl. Phys. Lett. 94, 201112 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, Appl. Phys. Lett. 88, 041105 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    T. Schwarzl, M. Eibelhuber, W. Heiss, E. Kaufmann, G. Springholz, A. Winter, and H. Pascher, J. Appl. Phys. 101, 093102 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    P. Dziawa, B. A. Orlowski, V. Osinniy, M. Pietrzyk, B. Taliashvili, T. Stroy, and R. L. Johnson, Mater. Sci. Poland 25, 377 (2007).Google Scholar
  26. 26.
    S. Wang, W. Wang, and Y. Qian, Mater. Res. Bull. 35, 2057 (2000).CrossRefGoogle Scholar
  27. 27.
    M. Romcevic, N. Romcevic, D. R. Khokhlov, and I. I. Ivanchik, J. Phys.: Condens. Matter 12, 8737 (2000).ADSGoogle Scholar
  28. 28.
    M. Aigle, H. Pascher, H. Kim, E. Tarhan, A. J. Mayur, Sciacca M. Dean, A. K. Ramdas, G. Springholz, and G. Bauer, Phys. Rev. B 64, 035316 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. P. Zimin
    • 1
  • E. S. Gorlachev
    • 1
    • 2
  • A. V. Baranov
    • 3
  • S. A. Cherevkov
    • 3
  • E. Abramof
    • 4
  • P. H. O. Rappl
    • 4
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Yaroslavl Branch of the Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia
  3. 3.ITMO UniversitySt. PetersburgRussia
  4. 4.Laboratório Associado de Sensores e MaterialsInstituto Nacional de Pesquisas EspaciaisSão José dos CamposBrazil

Personalised recommendations