Optics and Spectroscopy

, Volume 117, Issue 6, pp 1010–1017 | Cite as

Reconstruction of continuous spectra by the regularization method using model spectra

Geometric and Applied Optics

Abstract

The inverse problem of spectroscopy—reconstruction of continuous spectra by solving the Fredholm integral equation of the first kind (an ill-posed problem)—is considered. The equation is solved by the Tikhonov regularization method using the method of computational experiments, according to which, along with initial example P, where experimental spectrum u is specified and true spectrum z is sought for, “similar” model example spectrum Q (or several examples) with specified z and modeled u is processed with allowance for additional information on true spectrum z in example P. This approach makes it possible to choose regularization parameter α and estimate the error in reconstructing spectrum z in example P. Some numerical illustrations are presented. Different response functions of spectrometers are considered: slotlike, triangular, diffraction, Gaussian, dispersion, and exponential; identical widths a(λ) at a level of 0.5 and identical integral widths W(λ) are used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Rautian, Usp. Fiz. Nauk 66(3), 475 (1958).Google Scholar
  2. 2.
    V. S. Sizikov, Mathematical Methods for Processing Measurement Results (Politekhnika, St. Petersburg., 2001) [in Russian].Google Scholar
  3. 3.
    V. N. Starkov, Constructive Methods of Computational Physics in Interpretation Problems (Naukova dumka, Kiev, 2002) [in Russian].Google Scholar
  4. 4.
    T. Fleckl, H. Jäger, and I. Obernberger, J. Phys. D 35, 3138 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    V. S. Sizikov, Inverse Applied Problems and MatLab (Lan’, St. Petersburg., 2011) [in Russian].Google Scholar
  6. 6.
    V. S. Sizikov and A. V. Krivykh, Izv. Vyssh. Uchebn. Zaved., Priborostr. 54(9), 44 (2011).Google Scholar
  7. 7.
    V. S. Sizikov, Integral Equations and MatLab in Tomography, Iconics, and Spectroscopy Problems (LAP, St. Petersburg-Saarbrücken, 2011) [in Russian].Google Scholar
  8. 8.
    V. S. Sizikov and A. V. Krivykh, Nauch.-Tekh. Vestn. ITMO, No. 3(85), 22 (2013).Google Scholar
  9. 9.
    Encyclopedic Dictionary of Physics, Ed. by A. M. Prokhorov (Sovetskaya Entsiklopediya, Moscow, 1984) [in Russian].Google Scholar
  10. 10.
    G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003) [in Russian].Google Scholar
  11. 11.
    V. F. Turchin and L. S. Turovtseva, Opt. Spektrosk. 36(2), 280 (1974).Google Scholar
  12. 12.
    B. Z. Tambovtsev and V. I. Drobyshevich, Zh. Prikl. Spektrosk. 24(2), 310 (1976).Google Scholar
  13. 13.
    N. G. Preobrazhenskii and A. I. Sedel’nikov, Zh. Prikl. Spektrosk. 35(4), 592 (1981).Google Scholar
  14. 14.
    T. G. Braginskaya and V. V. Klyubin, Solution of the Inverse Problem of Optical Mixing Spectroscopy by the Tikhonov Regularization Method, Preprint of LIYaF, Leningrad, 1983, no. 855.Google Scholar
  15. 15.
    M. V. Glazov and T. A. Bolokhova, Opt. Spektrosk. 67(3), 533 (1989).Google Scholar
  16. 16.
    Yu. E. Voskoboinikov, N. G. Preobrazhenskii, and A. I. Sedel’nikov, Mathematical Processing of Experiment in Molecular Gas Dynamics (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  17. 17.
    A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, Programs (Naukova Dumka, Kiev, 1986) [in Russian].MATHGoogle Scholar
  18. 18.
    O. E. Åkesson and K. J. Daun, Appl. Opt. 47(3), 407 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 1996).CrossRefMATHGoogle Scholar
  20. 20.
    P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms (SIAM, Philadelphia, 2010).CrossRefGoogle Scholar
  21. 21.
    A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Numerical Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1990) [in Russian].Google Scholar
  22. 22.
    V. S. Sizikov, Elektron. Model., No. 6, 3 (1981).Google Scholar
  23. 23.
    V. S. Sizikov, Elektron. Model. 13(4), 7 (1991).Google Scholar
  24. 24.
    A. F. Verlan’, V. S. Sizikov, and L. V. Mosentsova, Elektron. Model. 33(2), 3 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations