Optics and Spectroscopy

, Volume 117, Issue 5, pp 839–843 | Cite as

A principal component analysis of transmission spectra of wine distillates

  • M. V. Rogovaya
  • G. V. Sinitsyn
  • M. A. Khodasevich
Geometrical and Applied Optics

Abstract

A chemometric method of decomposing multidimensional data into a small-sized space, the principal component method, has been applied to the transmission spectra of vintage Moldovan wine distillates. A sample of 42 distillates aged from four to 7 years from six producers has been used to show the possibility of identifying a producer in a two-dimensional space of principal components describing 94.5% of the data-matrix dispersion. Analysis of the loads into the first two principal components has shown that, in order to measure the optical characteristics of the samples under study using only two wavelengths, it is necessary to select 380 and 540 nm, instead of the standard 420 and 520 nm, to describe the variability of the distillates by one principal component or 370 and 520 nm to describe the variability by two principal components.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blanco and A. Peguero, Trends Anal. Chem. 29, 1127 (2010).CrossRefGoogle Scholar
  2. 2.
    F. B. Gonzaga and C. Pasquini, Anal. Chim. Acta 670, 92 (2010).CrossRefGoogle Scholar
  3. 3.
    L. Xie, X. Ye, D. Liu, and Y. Ying, Food Chem. 114, 1135 (2009).CrossRefGoogle Scholar
  4. 4.
    D. Cozzolino, M. J. Kwiatkowski, R. G. Dambergs, W. U. Cynkar, L. J. Janik, G. Skouroumounis, and M. Gishen, Talanta 74, 711 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Kasemsumran, Y. P. Du, K. Maruo, and Y. Ozaki, Chemometrics Intelligent Laboratory Systems 82, 97 (2006).CrossRefGoogle Scholar
  6. 6.
    Z. Chuah, R. Paramesran, K. Thambiratnam, and S. Poh, Chemometrics Intelligent Laboratory Systems 104, 347 (2010).CrossRefGoogle Scholar
  7. 7.
    D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte, and L. Kaufman, Data Handling Sci. Technol. 2, 488 (1988).Google Scholar
  8. 8.
    M. Blanco and I. Villarroya, Trends Anal. Chem. 21, 240 (2002).CrossRefGoogle Scholar
  9. 9.
    E. M. Sobolev and I. V. Oseledtseva, RF Patent No. 2147372 (4 April 2000).Google Scholar
  10. 10.
    I. A. Egorov and A. K. Rodopulo, Chemistry and Biochemistry of Brandy Production (VO Agropromizdat, Moscow, 1988) [in Russian].Google Scholar
  11. 11.
    E. Skorbanova, E. Nezal’zova, B. Gaina, P. Rynda, and O. Tampei, in Transactions of the North Caucasus Research Institute of Horticulture and Viticulture (Krasnodar, 2013), Vol. 4, p. 141 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. V. Rogovaya
    • 1
  • G. V. Sinitsyn
    • 1
  • M. A. Khodasevich
    • 1
    • 2
  1. 1.Stepanov Institute of PhysicsNational Academy of Sciences of the Republic of BelarusMinskBelarus
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations