Optics and Spectroscopy

, Volume 117, Issue 4, pp 516–524 | Cite as

Spin populations and free valences in excited molecules and in radicals

  • S. G. Semenov
  • M. E. Bedrina
  • V. A. Klemeshev
  • M. V. Makarova
Spectroscopy of Atoms and Molecules


Using the DFT PBE0 quantum-chemical method, we have determined the spin populations and the free valences of atoms in (i) 3,4-dimethylenefuran; (ii) exciplex 3,4-dimethylenefuran · O2; (iii) phthalocyaninates PcCu and PcCo; (iv) cations Pc+Cu, Pc+Co, and Pc+Ni; (v) dication [PcAlOAlPc]2+; and (vi) two excited triplet diketones: fulleroid-type C58(CO)2 and cyclododeca-3,4,9,10-tetraene-1,7-dione. Free valences determine atomic contributions to the doubled variance of the many-electron spin. Unlike spin populations, they are insensitive to the choice of the component of a quasi-degenerate spin state of a chemical compound and account for the regioselectivity of the radical addition to 3,4-dimethylenefuran and the photochemical stability of Pc-containing nanosystems. In a triplet state of C12H12O2, the spin density and the free valence are localized on a single carbonyl group, whereas, in a triplet state of C58(CO)2, they are delocalized.


Triplet State Tetraene Spin Population Free Valence Cobalt Phthalocyaninates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. M. McConnell, J. Chem. Phys. 28(6), 1188 (1958).CrossRefADSGoogle Scholar
  2. 2.
    R. McWeeny, Rev. Mod. Phys. 32(2), 335 (1960).MathSciNetCrossRefzbMATHADSGoogle Scholar
  3. 3.
    K. Takatsuka, T. Fueno, and K. Yamaguchi, Theor. Chim. Acta 48(3), 175 (1978).CrossRefGoogle Scholar
  4. 4.
    I. S. Dmitriev and S. G. Semenov, Quantum Chemistry: Its Past and Present. Development of Electronic Notions on the Nature of the Chemical Bond (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  5. 5.
    M. Giambiagi, M. Giambiagi, D. R. Grempel, and C. D. Heymann, J. Chim. Phys. Phys.-Chim. Biol. 72(1), 15 (1975).Google Scholar
  6. 6.
    M. S. de Giambiagi, M. Giambiagi, and F. E. Jorge, Z. Natuforsch 39a, 1259 (1984).ADSGoogle Scholar
  7. 7.
    I. Mayer, Chem. Phys. Lett. 97(3), 270 (1983).CrossRefADSGoogle Scholar
  8. 8.
    I. Mayer, Int. J. Quantum Chem. 26(1), 151 (1984).CrossRefGoogle Scholar
  9. 9.
    R. McWeeny, J. Chem. Phys. 19(12), 1614 (1951).CrossRefADSGoogle Scholar
  10. 10.
    R. S. Mulliken, J. Chem. Phys. 23(10), 1833 (1955).CrossRefADSGoogle Scholar
  11. 11.
    I. Mayer, Int. J. Quantum Chem. 28(3), 419 (1985).CrossRefGoogle Scholar
  12. 12.
    I. Mayer, Int. J. Quantum Chem. 29(1), 73 (1986); 29 (3), 477 (1986).CrossRefGoogle Scholar
  13. 13.
    P.-O. Lőwdin, Phys. Rev. 97(6), 1490 (1955).MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    V. N. Staroverov and E. R. Davidson, Chem. Phys. Lett. 330(1), 161 (2000).CrossRefADSGoogle Scholar
  15. 15.
    D. R. Alcoba, L. Lain, A. Torre, and R. C. Bochicchio, Chem. Phys. Lett. 470(13), 136 (2009).CrossRefADSGoogle Scholar
  16. 16.
    E. Ramos-Cordoba, E. Matito, P. Salvador, and I. Mayer, Phys. Chem. Chem. Phys. 14(44), 15291 (2012).CrossRefGoogle Scholar
  17. 17.
    E. Ramos-Cordoba, E. Matito, I. Mayer, and P. Salvador, J. Chem. Theory. Comput. 8(4), 1270 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Head-Gordon, Chem. Phys. Lett. 380(3–4), 488 (2003).CrossRefADSGoogle Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C1 (Gaussian, Inc., Wallingford, 2010).Google Scholar
  20. 20.
    A. Chakrabarti, I. D. L. Albert, S. Ramasesha, S. Lalitha, and J. Chandrasekhar, Proc. Indian Sci. (Chem. Sci.) 105(10), 53 (1993).Google Scholar
  21. 21.
    P. Du, D. A. Hroat, and W. T. Borden, J. Am. Chem. Soc. 108(25), 8086 (1986).CrossRefGoogle Scholar
  22. 22.
    K. J. Stone, M. M. Greenberg, J. L. Goodman, K. S. Peters, and J. A. Berson, J. Am. Chem. Soc. 108(25), 8088 (1986).CrossRefGoogle Scholar
  23. 23.
    J. C. Scaiano, V. Wintgens, A. Bedell, and J. A. Berson, J. Am. Chem. Soc. 110(12), 4050 (1988).CrossRefGoogle Scholar
  24. 24.
    M. M. Greenberg, S. C. Blackstock, K. J. Stone, and J. A. Berson, J. Am. Chem. Soc. 111(10), 3671 (1989).CrossRefGoogle Scholar
  25. 25.
    J. J. Nash, P. Dowd, and K. D. Jordan, J. Am. Chem. Soc. 114(25), 10071 (1992).CrossRefGoogle Scholar
  26. 26.
    D. Cremer, M. Filatov, V. Polo, E. Kraka, S. Shaik, Int. J. Mol. Sci. 3(6), 604 (2002).CrossRefGoogle Scholar
  27. 27.
    H. Tukada, P. R. Bangal, N. Tamai, and Y. Yokoyama, J. Mol Struct. (Theochem) 724(1–3), 215 (2005).CrossRefGoogle Scholar
  28. 28.
    Z. Liu, X. Zhang, Y. Zhang, and J. Jiang, Spectrochim. Acta 67(5), 1232 (2007).MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. G. Semenov and M. E. Bedrina, Russ. J. Genenal Chem. 79(8), 1741 (2009).CrossRefGoogle Scholar
  30. 30.
    J. Berkowitz, J. Chem. Phys. 70(6), 2819 (1979).CrossRefADSGoogle Scholar
  31. 31.
    S. G. Semenov and M. E. Bedrina, J. Struct. Chem. 52(5), 996 (2011).CrossRefGoogle Scholar
  32. 32.
    S. G. Semenov and M. E. Bedrina, Opt. Spektrosk. 116(2), 190 (2014).CrossRefGoogle Scholar
  33. 33.
    P. J. Garratt, K. C. Nicolaou, and F. Sondheimer, J. Am. Chem. Soc. 95(14), 4582 (1973).CrossRefGoogle Scholar
  34. 34.
    R. Zahradník and R. Polák, Základy kvantove chemié (SNTL, Praha, 1976; Mir, Moscow, 1979).Google Scholar
  35. 35.
    A. I. Ermakov, Quantum Mechanics and Quantum Chemistry (Yurait, Moscow, 2010) [in Russian].Google Scholar
  36. 36.
    T. Suetsuna, N. Dragoe, W. Harneit, A. Weidinger, H. Shimotani, S. Ito, H. Takagi, and K. Kitazawa, Chem.-Eur. J. 8(22), 5080 (2002).CrossRefGoogle Scholar
  37. 37.
    T. S. Fabre, W. D. Treleaven, T. D. McCarley, C. L. Newton, R. M. Landry, M. C. Saraiva, and R. M. Strongin, J. Org. Chem. 63(11), 3522 (1998).CrossRefGoogle Scholar
  38. 38.
    N. Dragoe, S. Tanibayashi, K. Nakahara, S. Nakao, H. Shimotani, L. Xiao, K. Kitazawa, Y. Achiba, K. Kikuchi, and K. Nojima, Chem. Commun., No. 1, 85 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. G. Semenov
    • 1
  • M. E. Bedrina
    • 1
  • V. A. Klemeshev
    • 1
  • M. V. Makarova
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations