Optics and Spectroscopy

, Volume 117, Issue 1, pp 8–17 | Cite as

Analysis of light-induced diffusion ionization of a three-dimensional hydrogen atom based on the Floquet technique and split-operator method

  • D. K. Efimov
  • N. N. Bezuglov
  • A. N. Klyucharev
  • Yu. N. Gnedin
  • K. Miculis
  • A. Ekers
Spectroscopy of Atoms and Molecules

Abstract

A stable symplectic scheme for calculating particle trajectories in time-periodic force fields based on the Floquet technique and split-operator method is described. The dynamics of a three-dimensional hydrogen atom under the action of an external linearly polarized microwave electric field is studied in a numerical experiment. Under conditions of the implemented dynamical chaos, features in the evolution of angular momentum L(t) of a Rydberg electron (RE) that do not meet the assumptions of traditional theoretical approaches for describing light-induced diffusion ionization of the RE are revealed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Zaslavskii, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov, Weak Chaos and Quasi-Regular Structures (Nauka, Moscow, 1991) [in Russian].CrossRefGoogle Scholar
  2. 2.
    N. B. Delone, V. P. Krainov, and D. L. Shepelyanskii, Usp. Fiz. Nauk 140, 335 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    B. E. Sauer, S. Yokum, L. Moorman, et al., Phys. Rev. Lett. 68, 468 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    M. Yu. Zakharov, N. N. Bezuglov, A. N. Klyucharev, et al., Khim. Fiz. 30, 2 (2011).Google Scholar
  5. 5.
    V. P. Krainov, Zh. Eksp. Teor. Fiz. 138, 196 (2010).Google Scholar
  6. 6.
    B. Kaulakys and G. Vilutis, Phys. Scr. 59, 251 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    N. N. Bezuglov, V. M. Borodin, et al., Opt. Spektrosk. 93(5), 661 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    C. Bracher, T. Kramer, and J. B. Delos, Phys. Rev. A 73, 062114 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    E. I. Dashevskaya, I. Litvin, E. E. Nikitin, et al., Phys. Chem. Chem. Phys. 4, 3330 (2002).CrossRefGoogle Scholar
  10. 10.
    K. Miculis, I. I. Beterov, N. N. Bezuglov, et al., J. Phys. B 38, 1811 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    E. Hairer, Numerical Geometric Integration (Universite de Geneve, Geneve, 1999).Google Scholar
  12. 12.
    G. S. Balaraman and D. Vrinceanu, Phys. Lett. A 369, 188 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    S.-I. Cgua and D. A. Telnov, Phys. Rep. 390, 1 (2004).ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974).MATHGoogle Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1973).Google Scholar
  16. 16.
    A. K. Kazansky, N. N. Bezuglov, et al., Phys. Rev. A 64, 022719 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory (Nauka, Moscow, 1989).Google Scholar
  18. 18.
    A. K. Kazansky and N. N. Bezuglov, J. Phys. 33, 99 (2000).ADSGoogle Scholar
  19. 19.
    G. V. Golubkov and A. Z. Devdariani, Khim. Fiz., No. 11, 31 (2011).Google Scholar
  20. 20.
    H. Yoshida, Phys. Lett. A 150, 262 (1990).ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. Suzuki, Phys. Lett. A 165, 387 (1992).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. K. Efimov
    • 1
    • 2
  • N. N. Bezuglov
    • 1
    • 2
  • A. N. Klyucharev
    • 1
  • Yu. N. Gnedin
    • 3
  • K. Miculis
    • 4
  • A. Ekers
    • 4
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.Pulkovo ObservatoryRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Laser CentreUniversity of LatviaRigaLatvia

Personalised recommendations