Optics and Spectroscopy

, Volume 116, Issue 6, pp 933–940 | Cite as

Energy transfer from the singlet levels of diketones and dyes to lanthanide ions in nanoparticles consisting of their diketonate complexes

  • L. Yu. Mironov
  • E. B. Sveshnikova
  • V. L. Ermolaev
Condensed-Matter Spectroscopy

Abstract

The energy transfer from the S1 levels of p-phenylbenzoyltrifluoroacetone (PhBTA) and dyes to different Ln3+ ions is studied in nanoparticles (NPs) composed of complexes of this diketone with Ln3+ and 1,10-phenanthroline (phen) and doped with dye molecules. The quenching rate constants in the NPs consisting from complexes of Pr3+, Nd3+, Sm3+, Eu3+, Ho3+, Er3+, and Tm3+ are determined from the data on the quenching of sensitized (cofluorescence) and ordinary fluorescence of coumarin 30 (C30) and rhodamine 6G (R6G). The quenching rate constants vary from ≤5 × 1011 to 1013 s−1 for the fluorescence quenching of PhBTA by different Ln3+ ions, while the quenching of dye fluorescence occurs at rates of the order of 109 s−1. In the case of complexes with the Pr3+ ions, the fluorescence quenching of PhBTA in NPs composed of its complexes is accompanied by sensitized luminescence of Pr3+. The quenching observed is due to a nonradiative energy transfer from the S1 states of ligands and dyes to these ions. It is shown that in NPs composed of complexes with Eu3+, Yb3+, and Sm3+ the cofluorescence of C30 is quenched via the electron-transfer mechanism. The study of quenching of cofluorescence and fluorescence of dyes in NPs composed of mixed complexes of La3+ and Nd3+ (Ho3+) shows that the observed quenching of fluorescence and cofluorescence is governed mainly by the quenching of the S1 state of dyes when the Nd3+ (Ho3+) content does not exceed 5–10% and by the quenching of the S1 state of a ligand when the Nd3+ (Ho3+) content exceeds 50%. It is assumed that the high rate constant of energy transfer from the S1 level of ligands to ions Pr3+, Nd3+, Ho3+, Er3+, and Tm3+ in NPs composed of beta-diketonate complexes is caused by exchange interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Sveshnikova, L. Yu. Mironov, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 113(6), 607 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    G. A. Crosby, R. E. Whan, and R. M. Alire, J. Chem. Phys. 34, 743 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    R. E. Whan and G. A. Crosby, J. Mol. Spectrosc. 8(4), 315 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, in Nonradiative Electronic Excitation Energy Transfer (Nauka, Leningrad, 1977), Chap. 6 [in Russian].Google Scholar
  5. 5.
    M. Kleinerman, J. Chem. Phys. 51(6), 2370 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    V. L. Ermolaev and E. B. Sveshnikova, Chem. Phys. Lett. 23(3), 349 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 63(11), 905 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    V. L. Ermolaev and E. B. Sveshnikova, Opt. Spectrosc. 111(1), 34 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    V. L. Ermolaev and T. A. Shakhverdov, Opt. Spectrosc. 26, 845 (1969).Google Scholar
  10. 10.
    V. L. Ermolaev, E. B. Sveshnikova, and T. A. Shakhverdov, Russ. Rev. Chem. 45(10), 1753 (1976).CrossRefGoogle Scholar
  11. 11.
    T. A. Shakhverdov, Zh. Prikl. Spektrosk. 62(2), 83 (1995).Google Scholar
  12. 12.
    G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. O. Alink, and F. C. J. M. van Veggel, Chem. Phys. Chem. 3, 1014 (2002).CrossRefGoogle Scholar
  13. 13.
    V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, and F. Vogtle, J. Am. Chem. Soc. 124(2), 6461 (2002).CrossRefGoogle Scholar
  14. 14.
    E. B. Sveshnikova, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 111(2), 302 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    S. S. Dudar’, E. B. Sveshnikova, V. L. Ermolaev, E. V. Mamonchikov, and A. V. Gulyaev, Opt. Spectrosc. 107(1), 77 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    E. B. Sveshnikova, S. S. Dudar’, L. Yu. Mironov, and V. L. Ermolaev, Opt. Spectrosc. 113(2), 115 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 81(9), 869 (2012).CrossRefGoogle Scholar
  18. 18.
    L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spectrosc. 115(4), 508 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    W. R. Jackson, J. Phys. Chem. 89(2), 294 (1985).CrossRefGoogle Scholar
  20. 20.
    S.-G. Roh, N. S. Back, Y. H. Kim, and H. K. Kim, Bull. Korean Chem. Soc. 28(8), 1249 (2007).CrossRefGoogle Scholar
  21. 21.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice-Hall, New Jersey, 1969).Google Scholar
  22. 22.
    O. L. Malta, J. Non-Cryst. Solids 354, 4770 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    W. M. Faustino, L. A. Nunes, I. A. A. Terra, V. C. F. C. Felinto, H. F. Brito, and O. L. Malta, J. Lumin. 137, 269 (2013).CrossRefGoogle Scholar
  24. 24.
    G. F. De Sa, O. L. Malta, Donega C. de Mello, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, Jr., and E. F. Silva, Coord. Chem. Rev. 196, 165 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. Yu. Mironov
    • 1
  • E. B. Sveshnikova
    • 1
  • V. L. Ermolaev
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations