Advertisement

Optics and Spectroscopy

, Volume 116, Issue 5, pp 715–720 | Cite as

A study of hydroxyapatite nanocrystals by the multifrequency EPR and ENDOR spectroscopy methods

  • T. B. Biktagirov
  • M. R. Gafurov
  • G. V. Mamin
  • S. B. Orlinskii
  • B. V. Yavkin
  • A. A. Rodionov
  • E. S. Klimashina
  • V. I. Putlyaev
  • Ya. Yu. Fillipov
XV International Feofilov Symposium

Abstract

Specimens of powders of hydroxyapatite (Ca10(PO4)6(OH)2) with average crystallite sizes in the range of 20–50 nm synthesized by the wet precipitation method have been investigated by the multifrequency (9 and 94 GHz) electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) methods. In specimens subjected to X-ray irradiation at room temperature, EPR signals that are caused by nitrogen compounds have been observed. Numerical calculations performed in terms of the density functional theory show that the observed EPR signal is caused by the occurrence of paramagnetic centers, the structure of which is NO 3 2− and which replace the positions of PO 4 3− in the hydroxyapatite structure.

Keywords

Electron Paramagnetic Resonance Hydroxyapatite Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Paramagnetic Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Dorozhkin, Am. J. Biomed. Eng. 2, 48 (2012).CrossRefGoogle Scholar
  2. 2.
    H. Zhou and J. Lee, Acta Biomat. 7, 2769 (2011).CrossRefGoogle Scholar
  3. 3.
    K. Hasna, S. Kumar, M. Komath, M. Varma, M. K. Jayaraj, and K. Kumar, Phys. Chem. Chem. Phys. 15, 8106 (2013).CrossRefGoogle Scholar
  4. 4.
    P. Fattibene and F. Callens, Appl. Radiat. Isotopes 68, 2033 (2010).CrossRefGoogle Scholar
  5. 5.
    V. A. Abdul’yanov, L. F. Galiullina, A. S. Galyavich, V. G. Izotov, G. V. Mamin, S. B. Orlinskii, A. A. Rodionov, M. Kh. Salakhov, N. I. Silkin, L. M. Sitdikova, R. N. Khairullin, and Yu. A. Chelyshev, Pis’ma Zh. Eksp. Teor. Fiz. 88(1), 75 (2008).Google Scholar
  6. 6.
    B. V. Yavkin, G. V. Mamin, S. B. Orlinskii, M. R. Gafurov, M. Kh. Salakhov, T. B. Biktagirov, E. S. Klimashina, V. I. Putlayev, Yu. D. Tretyakov, and N. I. Silkin, Phys. Chem. Chem. Phys. 14, 2246 (2012).CrossRefGoogle Scholar
  7. 7.
    M. R. Gafurov, B. V. Yavkin, T. B. Biktagirov, et al., Magn. Reson. Sol. 15, 13102 (2013).Google Scholar
  8. 8.
    M. Markovic, B. O. Fowler, and M. S. Tung, Material. J. Res. Nat. Inst. Stand. Technol. 109, 553 (2004).CrossRefGoogle Scholar
  9. 9.
    E. S. Kovaleva, M. P. Shabanov, V. I. Putlayev, Ya. Yu. Filippov, Y. D. Tretyakov, and V. K. Ivanov, Mat.-Wiss. Werkstofftec 39(11), 822 (2008).CrossRefGoogle Scholar
  10. 10.
    J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed. (Wiley, Hoboken, 2004).Google Scholar
  11. 11.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    D. Vanderbilt, Phys. Rev. B 41(11), 7892 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    P. Giannozzi, J. Phys.: Con. Matter 21, 395502 (2009).Google Scholar
  14. 14.
    M. Yashima, Y. Yonehara, and H. Fujimori, J. Phys. Chem. 115(20), 25077 (2011).Google Scholar
  15. 15.
    C. J. Pickard and F. Mauri, Phys. Rev. B 63(24), 245101 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    R. S. Eachus and M. C. R. Symons, J. Chem. Soc. Am. 790 (1968).Google Scholar
  17. 17.
    S. I. Bannov and V. A. Nevostruev, Radiat. Phys. Chem. 68, 917 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    I. P. Vorona, S. S. Ishchenko, N. P. Baran, et al., Fiz. Tverd. Tela 52(11), 2211 (2010).Google Scholar
  19. 19.
    N. P. Baran, I. P. Vorona, S. S. Ishchenko, et al., Fiz. Tverd. Tela 53(9), 1791 (2011).Google Scholar
  20. 20.
    A. B. Brik, A. P. Shpak, A. P. Klimenko, et al., Miner. J. (Ukraine) 28, 20 (2006).Google Scholar
  21. 21.
    J. Dugas, B. Bejjaji, D. Sayah, and J. C. Trombe, J. Solid State Chem. 24, 143 (1978).ADSCrossRefGoogle Scholar
  22. 22.
    W. E. Lee and W. M. Rainforth, Ceramic Microstructures: Property Control by Processing (Chapman and Hall, 1994).Google Scholar
  23. 23.
    J. F. Stanton, J. Chem. Phys. 126, 134309 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    M. Yashima, Y. Yonehara, and H. Fujimori, J. Phys. Chem. 115, 25077 (2011).Google Scholar
  25. 25.
    C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95(8), 3851 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • T. B. Biktagirov
    • 1
  • M. R. Gafurov
    • 1
  • G. V. Mamin
    • 1
  • S. B. Orlinskii
    • 1
  • B. V. Yavkin
    • 1
  • A. A. Rodionov
    • 1
  • E. S. Klimashina
    • 2
  • V. I. Putlyaev
    • 2
  • Ya. Yu. Fillipov
    • 2
  1. 1.Institute of PhysicsKazan (Volga Region) Federal UniversityKazan, TatarstanRussia
  2. 2.Faculty of Materials ScienceMoscow State UniversityMoscowRussia

Personalised recommendations