Optics and Spectroscopy

, Volume 116, Issue 4, pp 599–613 | Cite as

Investigation of the mineralization process of biosystems by IR diffuse reflection spectroscopy methods

  • V. M. Zolotarev
Condensed-Matter Spectroscopy

Abstract

Particular features of the application of Fourier-transform IR diffuse reflection spectroscopy methods to the in situ investigation of spectra of porous rough objects have been considered. The reciprocal influence of the scattering and absorption of porous objects on the formation of the impurity-band contour in the diffuse reflection spectrum when the impurity center is in the vicinity of the fundamental IR absorption band has been analyzed. Using methods of Fourier-transform IR diffuse reflection spectroscopy, processes of mineralization of fragments of mammoth tusks from a multilayer paleolithic site at Yudinovo (Bryansk oblast, Russia) and fragments of mammoth tusks from Yakutia (Russia) have been investigated. Particular features of mineralization processes (carbonate formation and silicification) on the surface and in the volume of objects at different conditions of their burial (humidity, temperature, soil acidity) have been studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Rozanov, in Materials of the 4th International Mineralogical, Seminar: Mineralogy and Life. The Origin of Biosphere and Coevolution of Mineral and Biological Worlds, Biomineralogy (Institute of Geology of the Komi NTs UrO RAN, 2007), p. 61.Google Scholar
  2. 2.
    N. P. Edwards, H. E. Barden, B. E. van Dongen, et al., Proc. Roy. Soc. B (2012).Google Scholar
  3. 3.
    R. R. Reisz, T. D. Huang, E. M. Roberts, et al., Nature 496, 210 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    M. Igisu, S. Nakashima, Y. Ueno, et al., Appl. Spectrosc. 60, 1111 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    G. T. Ushatinskaya, in Materials of the 4th International Mineralogical, Seminar: Mineralogy and Life. The Origin of Biosphere and Coevolution of Mineral and Biological Worlds, Biomineralogy (Institute of Geology of the Komi NTs UrO RAN, 2007), p. 68.Google Scholar
  6. 6.
    M. M. Astaf’eva, L. M. Gerasimenko, A. R. Geptner, et al., Fossil Bacteria and other Microorganisms in Terrestrial Rocks and Astromaterials, Ed. by A. Yu. Rozanov and G. T. Ushatinskaya (PIN RAN, Moscow, 2011) [in Russian].Google Scholar
  7. 7.
    B. E. DiGregorio, Spectroscopy 20(2), 50 (2005).Google Scholar
  8. 8.
    J. A. Arnold and T. D. Glotch, in Abstracts of the 42th Lunar and Planetary Scientific Conference (The Woodlands, 2011), Abstr. No. 1923.Google Scholar
  9. 9.
    M. J. D. Low and C. Morterra, Appl. Spectrosc. 38, 807 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Dauphin, Appl. Spectrosc. 47, 52 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    F. Boroumand, J. E. Moser, and H. Berg, Appl. Spectrosc. 46, 1874 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    V. R. Phoenix, N. Yee, and K. O. Konhauser, Geochim. Cosmochim. Acta 68(4), 743 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    MIRAS-2 (Synchrotron Infrared Microspectroscopy) An Infrared Microspectroscopy Beamline for ALBA, Ed. by Gary Ellis (Madrid, 2009).Google Scholar
  14. 14.
    Nondestructive and Microanalytical Tecniques in Art and Cultural Heritage Research in TECNART 2007 April (Lissabon, 2007).Google Scholar
  15. 15.
    V. M. Zolotarev, N. V. Nikonorov, and A. I. Ignat’ev, Modern Methods of Research of Optical Materials (NIU ITMO, St. Petersburg, 2013) [in Russian].Google Scholar
  16. 16.
    Technology, Investigation, and Conservation of Articles of Easel and Mural Painting in Nondestructive Methods of Investigation, Ed. by Yu. I. Grenberg (Moscow, 1987), Chap. II, pp. 89–126 [in Russian].Google Scholar
  17. 17.
    Contactless Analysis of Mural Paintings with a New Portable FT-IR Analyzer, Appl. Note AN#77 (Bruker Optics, Bologna, 2009).Google Scholar
  18. 18.
    C. Miliani, B. Brunetti, A. Sgamellotti, et al., Appl. Spectrosc. 61, 293 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    M. Fabbri, M. Picollio, S. Porcinal, and M. Bacci, Appl. Spectrosc. 55, 420 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    Infrared and Raman Users Group Spectral Database, Edn. of 2007, Ed. by B. Price and B. Pretzel (Infrared and Raman Users Group, Philadelphia, 2009).Google Scholar
  21. 21.
    In Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, San Diego, 1991), Vol. 2, p. 957.Google Scholar
  22. 22.
    A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, Remote Sensing of Environment 113, 711 (2009).CrossRefGoogle Scholar
  23. 23.
    R. N. Clark, Manual of Remote Sensing, Vol. 3: Remote Sensing for the Earth Sciences, Ed. by A. N. Rencz (Wiley, New York, 1999).Google Scholar
  24. 24.
    M. Ostrooumov, B. Lasnier, and S. Lefrant, Infrared Reflection Spectrometry of Minerals and Gems. Catalogue of the Spectrum (Nantes, 2009).Google Scholar
  25. 25.
    N. J. Harrick, Am. Lab. News Ed. 39(19), 22 (2007).Google Scholar
  26. 26.
    In Solutions in Optical Spectroscopy (Harrick Scientific Products Inc., Pleasantville, 2011), p. 161.Google Scholar
  27. 27.
    A. Rein and F. Higgins, Handheld FTIR Analysis for the Conservation and Restoration of Fine Art and Historical Objects. Application Note (Agilent Technol. Inc., Dunbyri, 2011), Publ. No. 5990.Google Scholar
  28. 28.
    D. Sali, Alpha-R—in Situ and in Lab Applications (Bruker, Italia, 2011).Google Scholar
  29. 29.
    M. R. Derrick, D. Stulik, and J. M. Landry, Infrared Spectroscopy in Conservation Science (The Getty Conservation Institute, Los Angeles, 1999).Google Scholar
  30. 30.
    S. Vahur, K. Sibul, P. Ehasalu, et al., e-PRESERVATION Science 6, 43 (2009).Google Scholar
  31. 31.
    E. L. Kendix, Transmission and Reflection (ATR) Far-Infrared Spectroscopy Applied in the Analysis of Cultural Heritage Materials (Tesi di Dottorato) (Universitá di Bologna, 2009).Google Scholar
  32. 32.
    G. L. Shearer, An Evaluation of Fourier Transform Infrared Spectroscopy for the Characterization of Organic Compounds in Art and Archaeology (PhD Dissertation) (University College London, 1989).Google Scholar
  33. 33.
    S. Shoval, Optical Materials 24, 117 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    T. J. U. Thompson, M. Gauthier, and M. Islam, J. Archaeological Sci. 36, 910 (2009).CrossRefGoogle Scholar
  35. 35.
    P. Sathya, G. Verlaj, and S. Meyvel, Adv. Appl. Sci. Res. 3, 776 (2012).Google Scholar
  36. 36.
    R. W. Pohl, Optik und Atomphysik (Optics and Atomic Physics) (Springer, Berlin, 1963).CrossRefGoogle Scholar
  37. 37.
    P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, Hoboken, 2007).CrossRefGoogle Scholar
  38. 38.
    G. Kortum, Reflectance Spectroscopy (Springer-Verlag, Berlin, 1969).CrossRefGoogle Scholar
  39. 39.
    P. Kubelka, Reflectance Spectroscopy (Theory, Methods, Procedures) (Mir, Moscow, 1978) [Russian translation].Google Scholar
  40. 40.
    V. M. Zolotarev, Opt. Spektrosk. 107(5), 794 (2009).CrossRefGoogle Scholar
  41. 41.
    E. H. Korte and A. Roseler, Vibr. Spectrosc. 43, 111 (2007).CrossRefGoogle Scholar
  42. 42.
    E. H. Korte and A. Roseler, Anal. Bioanal. Chem. 382, 1987 (2005).CrossRefGoogle Scholar
  43. 43.
    N. Poli, A. Elia, and O. Chiantore, e-PRESERVATION Science 6, 174 (2009).Google Scholar
  44. 44.
    V. M. Zolotarev and G. A. Khlopachev, Opt. Spektrosk. 114(6), 1036 (2013).CrossRefGoogle Scholar
  45. 45.
    G. A. Khlopachev and Yu. N. Gribchenko, Kr. Soobshch. In-ta Arkheologii RAN, No. 227, 134 (2012).Google Scholar
  46. 46.
    G. A. Khlopachev, Mammoth Ivory Articles of Art and Armament in Ancient Cultures of the North Eurasia (Technological and Functional Aspects)(Nauka, St. Petersburg, 2006) [in Russian].Google Scholar
  47. 47.
    G. A. Khlopachev, Tusk Industries of the Upper Paleolith of Eastern Europe (Nauka, St. Petersburg, 2011) [in Russian].Google Scholar
  48. 48.
    F. A. Findersen and L. Brecevic, Acta Chem. Scandinavica 45, 1018 (1991).CrossRefGoogle Scholar
  49. 49.
    G. Turner-Walker, in Advances in Human Palaeopathology, Ed. by R. Pinhasi and S. Mays (Wiley, New York, 2008), pp. 1–29.Google Scholar
  50. 50.
    P. Person, N. Nilsson, and S. Sjoberg, Thin Solid Films 177, 263 (1996).Google Scholar
  51. 51.
    B. Wondee, C. Danvirutai, and T. Srithanratana, in Pure and Applied Chemistry International Conference PACCON2010 (2010), pp. 949–952.Google Scholar
  52. 52.
    S. Mandel and A. C. Tas, Materials Sci. Eng. 30, 245 (2010).CrossRefGoogle Scholar
  53. 53.
    K. Rajendran and C. D. Keefe, Cryst. Res. Technol. 45(9), 939 (2010).CrossRefGoogle Scholar
  54. 54.
    J. Xu, D. F. R. Gilson, and I. S. Butler, Spectrochim. Acta A 54, 1869 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. M. Zolotarev
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations