Optics and Spectroscopy

, Volume 116, Issue 4, pp 567–574 | Cite as

Direct optical excitation of singlet oxygen in organic solvents

  • I. V. Bagrov
  • V. M. Kiselev
  • I. M. Kislyakov
  • E. N. Sosnov
Condensed-Matter Spectroscopy


Efficient excitation of singlet oxygen is demonstrated for several organic solvents (CS2, CCl4, and C6F14) that are irradiated using LED in the visible spectral range in the absorption bands of the O2-O2 collision complexes at the corresponding cooperative transitions. It is shown that the two-photon interaction of the pumping radiation in the Herzberg I band of molecular oxygen with its excitation to the 3Σu+ state and the subsequent collisional relaxation to the 1Σg and 1Δg singlet states contributes to the excitation of singlet oxygen.


  1. 1.
    I. V. Bagrov, I. M. Belousova, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spektrosk. 113(1), 59 (2012).CrossRefADSGoogle Scholar
  2. 2.
    I. B. C. Matheson and J. Lee, Chem. Phys. Lett. 7(4), 475 (1970).CrossRefADSGoogle Scholar
  3. 3.
    I. B. C. Matheson, J. Lee, B. S. Yamanashi, and M. L. Wolbrast, Chem. Phys. Lett. 27(3), 355 (1974).CrossRefADSGoogle Scholar
  4. 4.
    W. C. Eisenberg, K. Taylor, J. Veltman, and R. U. Murray, J. Am. Chem. Soc. 104(4), 1104 (1982).CrossRefGoogle Scholar
  5. 5.
    W. C. Eisenberg, A. Snelson, R. Butler, K. Taylor, and R. U. Murray, J. Photochem. 25(2–4), 439 (1984).CrossRefGoogle Scholar
  6. 6.
    A. Singh, G. W. Koroll, and S. A. Antonsen, J. Photochem. 25(2–4), 99 (1984).CrossRefGoogle Scholar
  7. 7.
    J. Wildt, G. Bednarek, E. H. Fink, and R. P. Wayne, Chem. Phys. 122(3), 463 (1988).CrossRefADSGoogle Scholar
  8. 8.
    A. A. Krasnovsky, Jr., N. N. Drozdova, A. V. Ivanov, and R. V. Ambartzumian, Biochemistry (Moscow) 68(9), 963 (2003).CrossRefGoogle Scholar
  9. 9.
    A. A. Krasnovsky, Jr., Chem. Phys. Lett. 400, 531 (2004).CrossRefADSGoogle Scholar
  10. 10.
    A. A. Krasnovsky, Jr., Chem. Phys. Lett. 430, 260 (2006).CrossRefADSGoogle Scholar
  11. 11.
    D. A. Pejakovi, R. A. Copeland, P. C. Cosby, and T. G. Slanger, J. Geophys. Res. 112, A10307 (2007).CrossRefADSGoogle Scholar
  12. 12.
    A. A. Krasnovsky, Jr., Chem. Phys. Lett. 458, 195 (2008).CrossRefADSGoogle Scholar
  13. 13.
    A. P. Trushina, V. G. Goldort, S. A. Kochubei, and A. V. Baklanov, Chem. Phys. Lett. 485, 11 (2010).CrossRefADSGoogle Scholar
  14. 14.
    F. Anquez and E. Courtade, Opt. Express 18, 22928 (2010).CrossRefADSGoogle Scholar
  15. 15.
    M. R. Detty, Photochem. Photobiol. 88, 2 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Sivery, F. Anquez, C. Pierlot, J. M. Aubry, and E. Courtade, Chem. Phys. Lett. 555, 252 (2013).CrossRefADSGoogle Scholar
  17. 17.
    A. S. Kurkov, E. M. Dianov, V. M. Paramonov, et al., Kvantovaya Elektron. 30, 791 (2000).CrossRefGoogle Scholar
  18. 18.
    S. D. Zakharov and A. V. Ivanov, Kvantovaya Elektron. 29, 192 (1999).Google Scholar
  19. 19.
    S. D. Zakharov, A. V. Ivanov, and E. B. Vol’f, Kvantovaya Elektron. 33, 149 (2003).CrossRefGoogle Scholar
  20. 20.
    A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, Laser Phys. 20, 357 (2010).CrossRefADSGoogle Scholar
  21. 21.
    F. Anquez, I. El. Yazidi-Belkoura, S. Randoux, P. Suret, and E. Courtade, Photochem. Photobiol. 88, 167 (2011).CrossRefGoogle Scholar
  22. 22.
    F. Anquez, I. El. Yazidi-Belkoura, P. Suret, S. Randoux, and E. Courtade, Laser Phys. 23, 025601 (2013).CrossRefGoogle Scholar
  23. 23.
    S. D. Razumovskii, Oxygen: Elementary Forms and Properties (Khimiya, Moscow, 1979).Google Scholar
  24. 24.
    P. D. Cooper, R. E. Johnson, and T. I. Quickenden, Planet. Space Sci. 51, 183 (2003).CrossRefADSGoogle Scholar
  25. 25.
    S. Jockusch, N. J. Turro, E. K. Thompson, et al., Photochem. Photobiol. Sci. 7, 235 (2008).Google Scholar
  26. 26.
    G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, J. Geophys. Research 95, 18 (1990).Google Scholar
  27. 27.
    V. I. Dianov-Klokov, Opt. Spektrosk. 16(3), 409 (1964); Opt. Spektrosk. 20(5), 954 (1966).Google Scholar
  28. 28.
    I. V. Bagrov, I. M. Belousova, et al., Opt. Spektrosk. 102(1), 58 (2007).CrossRefADSGoogle Scholar
  29. 29.
    I. B. Golovanov and S. M. Zhenodarova, Zh. Obshch. Khim. 75, 1879 (2005).Google Scholar
  30. 30.
    C. Schweitzer, Chem. Rev. 103, 1685 (2003).CrossRefGoogle Scholar
  31. 31.
    I. V. Bagrov, I. M. Belousova, A. S. Grenishin, et al., Kvantovaya Elektron. 38, 286 (2008).CrossRefGoogle Scholar
  32. 32.
    D. H. Parker, Acc. Chem. Res. 33, 563 (2000).CrossRefGoogle Scholar
  33. 33.
    A. A. Krasnovsky, Jr., Singlet Molecular Oxygen and Primary Mechanisms of the Photodynamic Action of Optical Radiation. Advances in Science and Technology. Modern Problems of Laser Physics (VINITI, Moscow, 1990), Vol. 3 [in Russian].Google Scholar
  34. 34.
    D. I. Schuster, P. S. Baran, R. K. Hatch, A. U. Khan, and S. R. Wilson, Chem. Commun., No. 22, 2493 (1998).Google Scholar
  35. 35.
    R. Taylor, M. P. Barrow, and T. Drewello, Chem. Commun., No. 22, 2497 (1998).Google Scholar
  36. 36.
    T. L. Makarova, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 257 (2001).Google Scholar
  37. 37.
    A. Hanf, A. Lauter, and H.-R. Volpp, Chem. Phys. Lett. 368, 445 (2003).CrossRefADSGoogle Scholar
  38. 38.
    N. Carlon Rontu, D. K. Papanastasiou, E. L. Fleming, C. H. Jackman, and P. A. Newman, Atmos. Chem. Phys. 10, 6137 (2010).CrossRefADSGoogle Scholar
  39. 39.
    L. Nelson, J. J. Treacy, and H. W. Sidebottom, in Physico-Chemical Behaviour of Atmospheric Pollutants, Ed. by B. Versino et al. (Luxembourg, Brussels, 1984), p. 259.Google Scholar
  40. 40.
    R. J. Meyer, D. J. Safarik, C. T. Reeves, D. T. Allen, and C. B. Mullins, J. Molec. Catalysis A: Chemical 167, 59 (2001).CrossRefGoogle Scholar
  41. 41.
    T. Einfeld, A. Chichinin, C. Maul, and K.-H. Gericke, J. Chem. Phys. 116(7) (2002).Google Scholar
  42. 42.
    D. Maric, J. P. Burrows, R. Meller, and G. K. Moortgat, J. Photochem. Photobiol. A 70, 205 (1993).CrossRefGoogle Scholar
  43. 43.
    D. K. Papanastasiou, K. J. Feierabend, and J. B. Burkholder, J. Chem. Phys. 134, 204310 (2011).CrossRefADSGoogle Scholar
  44. 44.
    C. B. Kretschmer, J. Nowakowska, and R. Wiebe, Ind. Eng. Chem. 38(5), 506 (1946).Google Scholar
  45. 45.
    Perry’s Chemical Engineers’ Handbook, 7-th ed. (McGraw-Hill, New York, 1997).Google Scholar
  46. 46.
    K. Bogumil, J. Orphal, et al., J. Photochem. Photobiol. A: Chemistry 157, 167 (2003).CrossRefGoogle Scholar
  47. 47.
    R. Thalman and R. Volkamer, Phys. Chem. Chem. Phys. 15, 15371 (2013).CrossRefGoogle Scholar
  48. 48.
    M. Sneep and W. Ubachs, J. Quantitative Spectrosc. Rad. Transfer 78, 171 (2003).CrossRefADSGoogle Scholar
  49. 49.
    A. N. Macpherson, T. G. Truscott, and P. H. Turner, J. Chem. Soc., Faraday Trans. 90(8), 1065 (1994).CrossRefGoogle Scholar
  50. 50.
    A. N. Terenin, Photonics of Molecules of Dyes and Related Organic Compounds (Nauka, Leningrad, 1967).Google Scholar
  51. 51.
    I. V. Bagrov, I. M. Belousova, A. S. Grenishin, et al., Opt. Spektrosk. 112(6), 1009 (2012).CrossRefGoogle Scholar
  52. 52.
    I. V. Bagrov, I. M. Belousova, A. S. Grenishin, et al., Opt. Zh. 79(10), 35 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. V. Bagrov
    • 1
  • V. M. Kiselev
    • 1
  • I. M. Kislyakov
    • 1
    • 2
  • E. N. Sosnov
    • 1
  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations