Optics and Spectroscopy

, Volume 116, Issue 3, pp 418–423 | Cite as

Aqueous suspensions of single-wall carbon nanotubes: Degree of aggregation into bundles and optical properties

  • A. V. Venediktova
  • V. N. Bocharov
  • A. Yu. Vlasov
  • I. M. Kislyakov
  • V. M. Kiselev
  • E. A. Kats
  • E. D. Obraztsova
  • A. S. Pozharov
  • S. A. Povarov
Condensed-Matter Spectroscopy

Abstract

Aqueous suspensions of nanotubes, as well as the structure and optical properties of their aggregates (bundles), are studied by spectroscopy and high-resolution electron microscopy. The structure of nanoparticles is controlled by varying the ultrasonication time during preparation of suspensions. It is found that the defectiveness of nanotubes increases with decreasing bundle size. A correlation is shown to take place between the suspension preparation regime, the structure of nanoparticles, and the relaxation of the photoexcitation energy of their electronic shells. It is found that the efficiency of photoexcitation energy conversion into heat increases with increasing degree of aggregation of nanotubes into bundles.

References

  1. 1.
    L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, Carbon 40, 1789 (2002).CrossRefGoogle Scholar
  2. 2.
    I. M. Belousova, N. G. Mironova, A. G. Scobelev, and M. S. Yur’ev, Opt. Commun. 235, 445 (2004).CrossRefADSGoogle Scholar
  3. 3.
    J. Wang, Y. Chen, and W. J. Blau, J. Mater. Chem. 19, 7425 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Rahman, S. Mirza, A. Sarkar, and G. W. Rayfield, J. Nanosci. Nanotechnol. 10, 4805 (2010).CrossRefGoogle Scholar
  5. 5.
    Z. Shi, Y. Lian, X. Zhou, Zh. Gu, Y. Zhang, S. Iijima, Q. Gong, H. Li, and S. Zhang, Chem. Commun. 6, 461 (2000).Google Scholar
  6. 6.
    M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).CrossRefADSGoogle Scholar
  7. 7.
    G. Moos, R. Fasel, and T. Hertel, J. Nanosci. Nanotechnol. 3, 145 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Reich, C. Thornsen, and J. Maultzsch, Carbon Nanotubes. Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004).Google Scholar
  9. 9.
    M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Lett. 3, 269 (2003).CrossRefADSGoogle Scholar
  10. 10.
    A. V. Venediktova, A. Yu. Vlasov, E. D. Obraztsova, D. A. Videnichev, I. M. Kislyakov, and E. P. Sokolova, Appl. Phys. Lett. 100, 251903 (2012).CrossRefADSGoogle Scholar
  11. 11.
    A. Yu. Vlasov, A. V. Venediktova, D. A. Videnichev, I. M. Kislyakov, E. D. Obraztsova, and E. P. Sokolova, Phys. Status Solidi B 249, 2341 (2012).CrossRefADSGoogle Scholar
  12. 12.
    N. R. Arutyunyan, D. V. Baklashev, and E. D. Obraztsova, Eur. Phys. J. B 75, 163 (2010).CrossRefADSGoogle Scholar
  13. 13.
    A. I. Chernov and E. D. Obraztsova, Phys. Status Solidi B 247, 2805 (2010).CrossRefGoogle Scholar
  14. 14.
    S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).CrossRefADSGoogle Scholar
  15. 15.
    D. I. Videnichev and I. M. Belousova, Appl. Phys. B: Las. Opt. 2013 (in press).Google Scholar
  16. 16.
    L. Wei, L.-J. Li, M. B. Chan-Park, Y. Yang, and Y. Chen, J. Phys. Chem. C 114, 6704 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).CrossRefADSGoogle Scholar
  18. 18.
    E. D. Obraztsova, M. Fujii, S. Hayashi, A. S. Lobach, I. I. Vlasov, A. V. Khomich, V. Yu. Timoshenko, W. Wenseleers, and E. Goovaerts, Nanoengineered Nanofibrous Materials. NATO Science Series II: Mathematics, Physics and Chemistry (Kluwer, Dordrecht, 2004), Vol. 169.Google Scholar
  19. 19.
    L. Cognet, D. A. Tsyboulski, J.-D. R. Rocha, C. D. Doyle, J. M. Tour, and R. B. Weisman, Science 316, 1465 (2007).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Venediktova
    • 1
    • 2
  • V. N. Bocharov
    • 1
  • A. Yu. Vlasov
    • 1
    • 2
  • I. M. Kislyakov
    • 2
    • 3
  • V. M. Kiselev
    • 3
  • E. A. Kats
    • 4
  • E. D. Obraztsova
    • 5
  • A. S. Pozharov
    • 5
  • S. A. Povarov
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.Vavilov State Optical InstituteSt. PetersburgRussia
  4. 4.Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevNegevIsrael
  5. 5.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations