Optics and Spectroscopy

, Volume 116, Issue 3, pp 392–407 | Cite as

Spectroscopic characteristics of praseodymium-doped cubic double sodium-yttrium fluoride crystals Na0.4Y0.6F2.2:Pr3+. Intensities of optical transitions and luminescence kinetics

  • A. M. Tkachuk
  • S. E. Ivanova
  • A. A. Mirzaeva
  • M. -F. Joubert
  • Y. Guyot
Condensed-Matter Spectroscopy


Using the Bridgman-Stockbarger technique, we have grown a series of cubic crystals Na0.4Y0.6F2.2:Pr3+ (NYF:Pr3+) with a content of praseodymium in the range of 0.04–9 at %. We have determined the composition of crystals, evaluated their optical quality, and found the incorporation coefficient of Pr3+ ions into the Na0.4Y0.6F2.2 matrix (K Pr ∼ 0.9). We have examined optical spectra of NaYF:Pr3+ crystals at room and low (7 K) temperatures in the range of 200–2500 nm. The low-temperature absorption spectra of NYF:Pr3+ crystals have been shown to consist of broad weakly structured bands. Based on the analysis of low-temperature absorption spectra, the structure of the Stark splitting of praseodymium levels has been represented in terms of a model of “quasi-centers,” which are characterized by an inhomogeneous broadening of Stark components. From experimental absorption cross-section spectra at T = 300 K, we have calculated oscillator strengths for transitions from the ground state 3 H 4 to excited multiplets 3 H 5, 3 H 6, 3 F j (j = 2, 3, 4), 1 G 4, 1 D 2, and (3 P j ,1 I 6) (j = 0, 1, 2). Using the Judd-Ofelt method, we have determined intensity parameters Ω t and found that Ω2 = 0, Ω4 = 4.4 × 10−20, and Ω6 = 2.28 × 10−20 cm2. With these values, we have calculated the probabilities of radiative transitions, the branching coefficients, and the lifetimes of the radiative levels 1 D 2 and 3 P 0. The probabilities of multiphonon nonradiative transitions in NYF:Pr3+ crystals have been estimated. Using the method of kinetic spectroscopy with selective excitation, we have investigated the luminescence decay kinetics of praseodymium from the 3 P 0 and 1 D 2 levels upon their selective resonant excitation by nanosecond laser pulses. The inference has been made that Na0.4Y0.6F2.2:Pr3+ crystals are processable; admit doping by praseodymium in high concentrations; and, with respect to all their radiative characteristics, can be potentially considered as active media for converters of optical radiation and solid-state continuously tunable lasers in the visible range.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, New York, 1996).Google Scholar
  2. 2.
    T. Gün, P. Metz, and G. Huber, Opt. Lett. 36(6), 1002 (2011).CrossRefADSGoogle Scholar
  3. 3.
    B. S. Richards, Sol. Energy Mater., Sol. Cells 90(9), 1189 (2006).CrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, Sol. Energy Mater., Sol. Cells 91(4), 238 (2007).CrossRefGoogle Scholar
  5. 5.
    J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, H. U. Güdel, Opt. Mater. 27, 1111 (2005).CrossRefADSGoogle Scholar
  6. 6.
    R. S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, and R. Vallejo, Anal. Biochem. 293(1), 22 (2001).CrossRefGoogle Scholar
  7. 7.
    H. H. Caspers and H.E. Rast, J. Lumin. 10, 347 (1975).CrossRefGoogle Scholar
  8. 8.
    M. T. Fournier, D. Zakaria, A. Arbus, and J. C. Cousseins, J. Less Common Metals 153(1), 79 (1989).CrossRefGoogle Scholar
  9. 9.
    M. F. Joubert, C. Linarès, B. Jacquier, A. Cassanho, and H. P. Jenssen, J. Lumin. 51(4), 175 (1992).CrossRefGoogle Scholar
  10. 10.
    P. Boutinaud, R. Mahiou, N. Martin, and M. Malinowski, J. Lumin. 72–74, 809 (1997).CrossRefGoogle Scholar
  11. 11.
    N. Martin, P. Boutinaud, M. Malinowski, R. Mahiou, J. C. Cousseins, J. Alloys Comp. 275-277, 304 (1998).CrossRefGoogle Scholar
  12. 12.
    Xiangfu Wang, Siguo Xiao, Yanyan Bu, Xiaoliang Yang, and J. W. Ding, Opt. Lett. 33(22), 2653 (2008).CrossRefADSGoogle Scholar
  13. 13.
    Shuang Fang Lim, William S. Ryu, and Robert H. Austin, Opt. Express 18(3), 2309 (2010).CrossRefADSGoogle Scholar
  14. 14.
    J. F. Suyver, J. Grimm, K. W. Krämer, and H. U. Güdel, J. Lumin. 114(1), 53 (2005).CrossRefGoogle Scholar
  15. 15.
    J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).CrossRefADSGoogle Scholar
  16. 16.
    S. E. Ivanova, A. M. Tkachuk, M.-F. Joubert, Y. Guyot, and S. Guy, Opt. Spektrosk. 89(4), 587 (2000).CrossRefGoogle Scholar
  17. 17.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, and S. Guy, J. Lumin. 94-95, 343 (2001).CrossRefGoogle Scholar
  18. 18.
    D. N. Karminov, M. Kirm, V. N. Markov, T. V. Ouvarova, S. Vielhauer, and G. Zimmerer, Opt. Mater. 16, 437 (2001).CrossRefADSGoogle Scholar
  19. 19.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, V. P. Gapontzev, J. Alloys Comp. 380, 130 (2004).CrossRefGoogle Scholar
  20. 20.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, Opt. Spektrosk. 97(2), 266 (2004).CrossRefGoogle Scholar
  21. 21.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, Opt. Spektrosk. 99(6), 969 (2005).CrossRefGoogle Scholar
  22. 22.
    S. E. Ivanova, A. M. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontsev, OSA TOPS ASSP 98, 80 (2005).Google Scholar
  23. 23.
    A. M. Tkachuk, S. E. Ivanova, G. E. Novikov, and V. P. Gapontzev, in Proceedings of the MICS Conference (2009), PO9, pp. 1–4.Google Scholar
  24. 24.
    S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pelle, Opt. Spektrosk. 105(2), 250 (2008).CrossRefGoogle Scholar
  25. 25.
    S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pelle, Opt. Spektrosk. 106(6), 922 (2009).CrossRefGoogle Scholar
  26. 26.
    A. M. Tkachuk, S. E. Ivanova, A. A. Mirzaeva, and F. Pelle, Opt. Spektrosk. 111(6), 962 (2011).CrossRefGoogle Scholar
  27. 27.
    H. Chou, P. Albers, A. Cassanho, and H. P. Jenssen, Springer Ser. Opt. Sci. 6(9), 325 (1986).Google Scholar
  28. 28.
    Kh. S. Bagdasarov, A. A. Kaminskii, and B. P. Sobolev, Kristallografiya 13, 779 (1969).Google Scholar
  29. 29.
    H. Scheife, G. Huber, E. Heumann, S. Bär, and E. Osiac, Opt. Mater. 26, 365 (2004).CrossRefADSGoogle Scholar
  30. 30.
    A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, Opt. Lett. 29(22), 2638 (2004).CrossRefADSGoogle Scholar
  31. 31.
    A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, and W. Seelert, Opt. Express 14(8), 3282 (2006).CrossRefADSGoogle Scholar
  32. 32.
    F. Cornacchia, A. Di Lieto, M. Tonelli, A. Richter, E. Heumann, and G. Huber, Opt. Express 16(20), 15932 (2008).CrossRefADSGoogle Scholar
  33. 33.
    P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, Opt. Lett. 32(11), 1462 (2007).CrossRefADSGoogle Scholar
  34. 34.
    M. A. Dubinskii, A. C. Cefalas, E. Sarantopoulou, S. M. Spyrou, C. A. Nicolaides, R. Yu. Abdulsabirov, S. L. Korableva, and V. V. Semashko, J. Opt. Soc. Am. 9(7), 1148 (1992).CrossRefADSGoogle Scholar
  35. 35.
    E. Sarantopoulou, A. C. Cefalas, M. A. Dubinskii, C. A. Nicolaides, R. Yu. Abdulsabirov, S. L. Korableva, A. K. Naumov, and V. V. Semashko, Opt. Lett. 19(7), 499 (1994).CrossRefADSGoogle Scholar
  36. 36.
    S. Nicolas, E. Descroix, M. F. Joubert, Y. Guyot, M. Laroche, V. V. Semashko, A. M. Tkatchuk, and M. Malinowski, Opt. Mater. 22(2), 139 (2003).CrossRefADSGoogle Scholar
  37. 37.
    R. E. Thoma, G. M. Hebert, H. Insley, and C. F. Weaver, Inorg. Chem. 2(5), 1005 (1963).CrossRefGoogle Scholar
  38. 38.
    P. P. Fedorov, B. P. Sobolev, and S. F. Belov, Neorg. Mater. 15(5), 816 (1979).Google Scholar
  39. 39.
    A. A. Kaminskii, B. P. Sobolev, S. E. Sarkisov, G. A. Denisenko, V. V. Ryabchenkov, V. A. Fedorov, and T. V. Uvarova, Neorg. Mater. 18(3), 482 (1982).Google Scholar
  40. 40.
    A. M. Tkachuk, A. V. Poletimova, M. A. Petrova, V. Yu. Egorov, and N. E. Korolev, Opt. Spektrosk. 70(6), 1230 (1991).Google Scholar
  41. 41.
    M. V. Zamoryanskaya, M. A. Petrova, and T. S. Semen- ova, Neorg. Mater. 34(6), 752 (1998).Google Scholar
  42. 42.
    M. V. Zamoryanskaya, L. G. Morozova, A. V. Poletimova, et al., Zh. Prikl. Spektrosk. 55(6), 1010 (1991).Google Scholar
  43. 43.
    B. R. Judd, Phys. Rev. 127, 750 (1963).CrossRefADSGoogle Scholar
  44. 44.
    G. S. Ofelt, J. Chem. Phys. 37(3), 511 (1962).CrossRefADSGoogle Scholar
  45. 45.
    M. J. Weber, B. H. Matsinger, V. Donlan, and G. T. Surratt, J. Chem. Phys. 57, 562 (1972).CrossRefADSGoogle Scholar
  46. 46.
    P. R. Fields and K. Raynak, J. Chem. Phys. 49, 4412 (1968).CrossRefADSGoogle Scholar
  47. 47.
    L. A. Riseberg and H. W. Moos, Phys. Rev. 174(2), 429 (1968).CrossRefADSGoogle Scholar
  48. 48.
    T. Miyakava and D. L. Dexter, Phys. Rev. 1, 2961 (1970).CrossRefADSGoogle Scholar
  49. 49.
    A. M. Tkachuk, S. I. Klokishner, and M. V. Petrov, Opt. Spektrosk. 59(4), 802 (1985).Google Scholar
  50. 50.
    A. M. Tkachuk, Opt. Spektrosk. 68(6), 1324 (1990).Google Scholar
  51. 51.
    A. M. Tkachuk and S. I. Klokishner, Opt. Spektrosk. 61(1), 84 (1986).Google Scholar
  52. 52.
    E. N. Bodunov and V. A. Malyshev, Opt. Spektrosk. 62(6), 1280 (1987).Google Scholar
  53. 53.
    E. N. Bodunov, Zh. Prikl. Spektrosk. 55(5), 739 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. M. Tkachuk
    • 1
  • S. E. Ivanova
    • 1
  • A. A. Mirzaeva
    • 2
  • M. -F. Joubert
    • 3
  • Y. Guyot
    • 3
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Vavilov State Optical InstituteSt. PetersburgRussia
  3. 3.Institut Lumiére Matiére, UMR5306 Université Lyon 1-CNRSUniversité de LyonVilleurbanne cedexFrance

Personalised recommendations