Optics and Spectroscopy

, Volume 116, Issue 3, pp 379–383 | Cite as

Transformation of color centers during hologram recording in an additively colored CaF2 crystal

  • A. S. Shcheulin
  • A. E. Angervaks
  • A. V. Veniaminov
  • V. V. Zakharov
  • A. I. Ryskin
Condensed-Matter Spectroscopy

Abstract

When holograms are recorded on color centers in calcium fluoride crystals, these centers undergo spatial redistribution in the crystal bulk, which is accompanied by their transformation. The nature of this transformation has been investigated by optical spectroscopy and confocal scanning microscopy. It is shown that, under the recording conditions we used, the degree of center aggregation increases in both minima and maxima of the interference field in which the recording performed. The enhanced aggregation in field minima is caused by the increase in the concentration color centers, while the additional aggregation in maxima is determined by the specific conditions of hologram recording: the wavelength and power density of recording radiation and the crystal temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Belous, V. E. Mandel’, A. Yu. Popov, and A. V. Tyurin, Opt. Spectrosc. 87(2), 305 (1999).ADSGoogle Scholar
  2. 2.
    A. Yu. Popov, W. M. Belous, V. E. Mandel, and Yu. B. Shugailo, Proc. SPIE 3904, 195 (1999).CrossRefADSGoogle Scholar
  3. 3.
    A. Yu. Popov, A. V. Tyurin, and D. A. Vladimirov, Vestn. Cherkassk. Univ., Fiz.-Mat. Nauki, No. 53, 122 (2003).Google Scholar
  4. 4.
    A. S. Shcheulin, A. V. Veniaminov, Yu. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, Opt. Spectrosc. 103(4), 655 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. S. Shcheulin, A. E. Angervaks, A. I. Ryskin, R. Ya. Zakirov, and T. V. Serov, J. Opt. Technol. 73(11), 745 (2006).CrossRefADSGoogle Scholar
  6. 6.
    A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, Opt. Spectrosc. 103(4), 660 (2007).CrossRefADSGoogle Scholar
  7. 7.
    A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, Opt. Spectrosc. 110(4), 617 (2011).CrossRefADSGoogle Scholar
  8. 8.
    R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, Phys. Solid State 53(7), 1484 (2011).CrossRefADSGoogle Scholar
  9. 9.
    A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, Appl. Surf. Sci. 267, 112 (2013).CrossRefADSGoogle Scholar
  10. 10.
    A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, J. Opt. Soc. Am. B 29, 335 (2012).CrossRefADSGoogle Scholar
  11. 11.
    A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, Opt. Spectrosc. 113(6), 638 (2012).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. S. Shcheulin
    • 1
  • A. E. Angervaks
    • 1
  • A. V. Veniaminov
    • 1
  • V. V. Zakharov
    • 1
  • A. I. Ryskin
    • 1
  1. 1.University ITMOSaint PetersburgRussia

Personalised recommendations