Advertisement

Optics and Spectroscopy

, Volume 116, Issue 2, pp 173–178 | Cite as

A quantum-chemical study of intermediates of the 1O2 photogeneration sensitized by buckminsterfullerene and accompanying photochemical reactions

  • S. G. Semenov
  • M. E. Bedrina
Spectroscopy of Atoms and Molecules

Abstract

The intermediates of hypothetical photochemical reactions that accompany the quenching of the 3C 60 * triplet state by triplet oxygen are studied by the (U)PBE0 quantum-chemical method. The diradical C60-O-O formed from 3O2 and photoexcited buckminsterfullerene 3C 60 * is characterized by a negative binding energy −1.11 eV (with respect to C60 and 3O2), the singlet-triplet splitting ΔE ST of 0.07 eV, and the dipole moment of 3.2 D at the equilibrium internuclear separations 1.522 Å (CO) and 1.294 Å (OO). Its decay produces 1O2. The formation of a dioxetane circle lowers the energy by 0.8 eV. The ground-state energy of diketone C58(C=O)2 is 2.0 eV lower than the energy of C60-O-O. The metastable centrosymmetric diradical C60-C60, formed upon ineffective light absorption by clusters (C60)N, has a single interpolyhedral C-C bond (1.657 Å). Its triplet state T 1 lies 0.16 eV higher than the S 1 singlet. The S 1S 0 relaxation leads to the formation of a stable C60-C60 dimer with a shorter (1.584 Å) bis-single exothermic (+0.24 eV) bond of polyhedra. The photoexcited C60-C60 dimer is able to form isomeric metastable diradicals C60-C60-O-O.

Keywords

Adduct Triplet State Equilibrium Structure Quantum Chemical Study Buckminsterfullerene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, J. Phys. Chem. 95, 11 (1991).CrossRefGoogle Scholar
  2. 2.
    J. W. Arbogast and C. S. Foote, J. Am. Chem. Soc. 113, 8886 (1991).CrossRefGoogle Scholar
  3. 3.
    H. Tokuyama, S. Yamago, and E. Nakamura, J. Am. Chem. Soc. 115, 7918 (1993).CrossRefGoogle Scholar
  4. 4.
    A. Ikeda, H. Hatano, M. Kawaguchi, H. Suenaga, and S. Shinkai, Chem. Commun., 1403 (1999).Google Scholar
  5. 5.
    J. L. Bourdelande, J. Font, and R. Gonzalez-Moreno, Helv. Chim. Acta 84, 3488 (2001).CrossRefGoogle Scholar
  6. 6.
    V. P. Belousov, I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, T. K. Kris’ko, A. N. Ponomarev, and E. N. Sosnov, Opt. Zh. 68, 76 (2001).Google Scholar
  7. 7.
    O. B. Danilov, I. M. Belousova, A. A. Mak, V. P. Belousov, A. S. Grenishin, V. M. Kiselev, A. V. Kris’ko, A. N. Ponomarev, and E. N. Sosnov, Opt. Spektrosk. 95, 891 (2003).Google Scholar
  8. 8.
    Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, and T. Nagano, J. Am. Chem. Soc. 125, 12803 (2003).CrossRefGoogle Scholar
  9. 9.
    I. M. Belousova, N. G. Mironova, and M. S. Yuriev, Opt. Spektrosk. 98(3), 390 (2005).CrossRefGoogle Scholar
  10. 10.
    I. V. Bagrov, I. M. Belousova, O. B. Danilov, V. M. Kiselev, T. D. Murav’eva, and E. N. Sosnov, Opt. Spektrosk. 102(1), 58 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    I. V. Bagrov, I. M. Belousova, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, T. K. Kris’ko, and T. D. Murav’eva, Opt. Spektrosk. 105(4), 787 (2008).Google Scholar
  12. 12.
    I. V. Bagrov, I. M. Belousova, A. S. Grenishin, O. B. Danilov, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, T. D. Murav’eva, and E. N. Sosnov, Kvantovaya Elektron. 38, 280 (2008).CrossRefGoogle Scholar
  13. 13.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Rev. C. 01 (Gaussian, Inc., Wallingford, 2010).Google Scholar
  14. 14.
    S. G. Semenov and M. V. Makarova, Russ. J. General Chem. 81, 1805 (2011).CrossRefGoogle Scholar
  15. 15.
    Molecular Constants of Inorganic Compounds, Ed. by K. S. Krasnov (Khimiya, Leningrad, 1979) [in Russian].Google Scholar
  16. 16.
    H. Fueno, Y. Takenaka, and K. Tanaka, Opt. Spektrosk. 111(2), 248 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, and R. D. Johnson, Science 254, 410 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    S. Liu and Y. Lu, Science 254, 408 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    W. I. F. David, R. M. Ibberson, J. C. Matthewman, K. Prassides, T. J. S. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, and D. R. M. Walton, Nature 353, 147 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    S. G. Semenov, Yu. F. Sigolaev, and M. E. Bedrina, Russ. J. General Chem. 79, 2658 (2009).CrossRefGoogle Scholar
  21. 21.
    G.-W. Wang, K. Komatsu, Y. Murata, and M. Shiro, Nature 387, 583 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    K. K. Kalnin’sh, S. G. Semenov, and E. F. Panarin, Dokl. Akad. Nauk 390, 350 (2003).Google Scholar
  23. 23.
    K. K. Kalnin’sh and S. G. Semenov, Zh. Prikl. Khim. (St. Petersburg) 76, 1585 (2003).Google Scholar
  24. 24.
    S. G. Semenov and Yu. F. Sigolaev, Russ. J. General Chem. 77, 727 (2007).Google Scholar
  25. 25.
    S. G. Semenov and M. E. Bedrina, J. Structural Chem. 52, 996 (2011).CrossRefGoogle Scholar
  26. 26.
    A. M. Rao, P. Zhou, K. A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P. C. Eclund, D. S. Cornett, M. A. Duncan, and I. J. Amster, Science 259, 955 (1993).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Iwasa, K. Tanoue, T. Mitani, and T. Yagi, Phys. Rev. 58, 16374 (1998).CrossRefGoogle Scholar
  28. 28.
    M. Fujitsuka, C. Luo, O. Ito, Y. Murata, and K. Komatsu, J. Phys. Chem. A 103, 7155 (1999).CrossRefGoogle Scholar
  29. 29.
    K. H. Lee, H. M. Eun, S. S. Park, Y. S. Suh, K.-W. Jung, S. M. Lee, Y. H. Lee, and E. Osawa, J. Phys. Chem. B 104, 7038 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations