Advertisement

Optics and Spectroscopy

, Volume 116, Issue 2, pp 324–327 | Cite as

Deposition of bimetallic Au/Ag clusters by the method of laser deposition of nanoparticles from colloidal systems

  • A. A. Antipov
  • S. M. Arakelian
  • S. V. Kutrovskaya
  • A. O. Kucherik
  • T. A. Vartanian
Lasers and Their Applications

Abstract

A method of formation of bimetallic clusters on the surface of optically transparent media is proposed. Nanoparticles of noble metals were obtained by laser ablation into a liquid. Clusters were formed by means of colloidal deposition of nanoparticles. Cluster morphology after deposition was studied by means of atomic force and scanning electron microscopy. We demonstrate transformation of the transmission spectrum of obtained structures before and after laser-induced aggregation.

Keywords

Cluster Structure Colloidal System Bimetallic Cluster Droplet Deposition Bimetallic Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Park and R. A. Vaia, Adv. Mater. 20(20), 3882 (2008).CrossRefGoogle Scholar
  2. 2.
    N. A. Kirichenko, I. A. Sukhov, G. A. Shafeev, and M. E. Shcherbina, Kvantovaya Elektron. 42, 175 (2012).CrossRefGoogle Scholar
  3. 3.
    A. A. Antipov, S. M. Arakelyan, D. N. Bukharov, S. V. Kutrovskaya, A. O. Kucherik, A. V. Osipov, V. G. Prokoshev, and L. A. Shirkin, Khim. Fiz. Mezoskopiya 14(3), 401 (2012).Google Scholar
  4. 4.
    A. A. Antipov, S. M. Arakelyan, S. P. Zimin, S. V. Kutrovskaya, A. O. Kucherik, A. A. Makarov, and A. V. Osipov, Nano Mikrosistemn. Tekhnika, No. 11, 34 (2012).Google Scholar
  5. 5.
    S. Arakelian, S. P. Zimin, S. V. Kutrovskaya, and V. G. Prokoshev, Phys. Proc, No. 39, 401 (2012).Google Scholar
  6. 6.
    A. A. Manshina, A. V. Povolotskiy, A. V. Povolotskaya, T. Yu. Ivanova, I. O. Koshevoy, S. P. Tunik, M. Suvanto, and T. A. Pakkanen, Surf. Coat. Technol., No. 206, 3454 (2012).Google Scholar
  7. 7.
    Y. S. Yanovich, V. A. Kochemirovsky, S. V. Safonov, I. I. Tumkin, A. V. Povolotsky, A. A. Man’shina, A. G. Kuz’min, and L. G. Menchikov, Mendeleev Commun. 21(1), 34 (2011).CrossRefGoogle Scholar
  8. 8.
    H. Pyatenko, N. Wang, and T. Koshizaki, Laser Photonics Review, p. 1 (2013).Google Scholar
  9. 9.
    S. A. Beznosyuk and A. E. Bandin, Polyfunctional Chemical Materials and Technologies (Tomsk, 2007), Vol. 1 [in Russian].Google Scholar
  10. 10.
    A. A. Antipov, S. M. Arakelyan, S. V. Kutrovskaya, A. O. Kucherik, D. S. Nogtev, and V. G. Prokoshev, Nano Mikrosistemn. Tekhnika, No. 3, 4 (2011).Google Scholar
  11. 11.
    A. A. Antipov, S. M. Arakelyan, S. V. Kutrovskaya, A. O. Kucherik, and V. G. Prokoshev, RF Patent No. 2433948 (2010).Google Scholar
  12. 12.
    A. M. Bonch-Bruevich, T. A. Vartanyan, N. B. Leonov, S. G. Przhibel’skii, and V. V. Khromov, Opt. Spektrosk. 91, 830 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Antipov
    • 1
  • S. M. Arakelian
    • 1
  • S. V. Kutrovskaya
    • 1
  • A. O. Kucherik
    • 1
  • T. A. Vartanian
    • 2
  1. 1.Vladimir State UniversityVladimirRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations