Optics and Spectroscopy

, Volume 116, Issue 1, pp 84–90 | Cite as

The effect of temperature on the luminescence spectra of potassium-aluminum borate and silicate glasses with copper(I) and silver ions

  • A. N. Babkina
  • N. V. Nikonorov
  • A. I. Sidorov
  • P. S. Shirshnev
  • T. A. Shakhverdov
Condensed-Matter Spectroscopy


Luminescence and luminescence-excitation spectra of potassium-aluminum borate glasses containing copper(I) and silver ions have been investigated in the temperature range of 20–300°C. It is shown that the luminescence thermochromic effect, which manifests itself in a blue spectral shift of the luminescence bands with an increase in temperature, occurs in glasses of all types, reaching a value of 100 nm. Heating leads to a red shift of luminescence-excitation bands by 20 nm and their broadening. Luminescence quenching occurs in glasses exhibiting photochromic effect at room temperature. An increase in temperature leads to weakening and, finally, disappearance of the photochromic effect in these glasses with subsequent occurrence of the luminescence thermochromic effect.


Luminescence Spectrum Luminescence Intensity Luminescence Band Molecular Cluster Luminescence Excitation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Debnath, J. Lumin. 43, 375 (1985).CrossRefGoogle Scholar
  2. 2.
    H. Chen, M. Matsuoka, J. Zhang, and M. Anpo, J. Catal. 228, 75 (2004).CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, Chem. Phys. Lett. 482, 228 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    T. Srikumar, I. V. Kityk, C. S. Rao, Y. Gandhi, M. Pias- ecki, P. Bragiel, V. Kumar, and N. Veeraia, Ceram. Int. 37, 2763 (2011).CrossRefGoogle Scholar
  5. 5.
    H. Guo, R. F. Wei, and X. Y. Liu, Opt. Lett. 37, 1670 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    N. Vilar-Vidal, M. C. Blanco, M. A. Lopez-Quintela, J. Rivas, and C. Serra, J. Phys. Chem. 114, 15925 (2010).Google Scholar
  7. 7.
    H. Kawasaki, Y. Kosaka, Y. Myoujin, T. Narushima, T. Yonezawa, and R. Arakawa, Chem. Commun. 47, 7740 (2011).CrossRefGoogle Scholar
  8. 8.
    L. Y. Zhong, W. W. Tao, and C. Wei, Chin. Sci. Bull. 57, 41 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Park, G. Jeen, H. Kim, and I. Kim, J. Kor. Phys. Soc. 37, 309 (2000).Google Scholar
  10. 10.
    K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, Nature 431, 167 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    I. Kh. Akopyan, V. V. Golubkov, O. A. Dyatlova, A. N. Mamaev, B. V. Novikov, and A. N. Tsagan-Mandzhiev, Fiz. Tverd. Tela 52, 751 (2010).Google Scholar
  12. 12.
    T. Kataoka, T. Tokizaki, and A. Nakamura, Phys. Rev. B 48, 2815 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    N. Thantua, R. S. Schleya, and B. L. Justus, Opt. Commun. 220, 203 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Kim, N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and P. S. Shirshnev, Pis’ma Zh. Tekh. Fiz. 37(9), 22 (2011).Google Scholar
  15. 15.
    N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Opt. Zh. 75(12), 61 (2008).Google Scholar
  16. 16.
    A. V. Dotsenko, L. B. Glebov, and V. A. Tsekomskii, Physics and Chemistry of Photochromic Glasses (CRC Press, New York, 1998).Google Scholar
  17. 17.
    A. S. Kuznetsov, J. J. Velázquez, V. K. Tikhomirov, J. Mendez-Ramos, and V. V. Moshchalkov, Appl. Phys. Lett. 101, 251106 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, Opt. Express 20, 13582 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    E. V. Kolobkova, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, Opt. Spektrosk. 114(5), 260 (2013).Google Scholar
  20. 20.
    A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, Opt. Spektrosk. 114(2), 838 (2013).Google Scholar
  21. 21.
    N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and T. A. Shakhverdov, Opt. Spektrosk. 114(3), 417 (2013).CrossRefGoogle Scholar
  22. 22.
    E. Borsella, A. D. Vecchio, M. A. Garcia, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, J. Appl. Phys. 91, 90 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    S. Perruchas, C. Tard, X. F. le Goff, A. Fargues, A. Garcia, S. Kahlal, J.-Y. Saillard, T. Gacoin, and J.-P. Boilot, Inorg. Chem. 50, 10682 (2011).CrossRefGoogle Scholar
  24. 24.
    C. Tard, S. Perruchas, S. Maron, X. F. le Goff, F. Guillen, A. Garcia, J. Vigneron, A. Etcheberry, T. Gacoin, and J.-P. Boilot, Chem. Mater. 20, 7010 (2008).CrossRefGoogle Scholar
  25. 25.
    H. Xie, I. Kinoshita, T. Karasawa, K. Kimura, T. Nishioka, I. Akai, and K. Kanemoto, J. Phys. Chem. B 109, 9339 (2005).CrossRefGoogle Scholar
  26. 26.
    I. O. Koshevoy, C.-L. Lin, A. J. Karttunen, M. Haukka, C.-W. Shih, P-T. Chou, P. Sergey, S. P. Tunikc, and T. A. Pakkanena, Chem. Comm. 47, 5533 (2011).CrossRefGoogle Scholar
  27. 27.
    D. Sun, L. Zhang, H. Lu, S. Feng, and D. Sun, Dalton Trans. 42, 3528 (2013).CrossRefGoogle Scholar
  28. 28.
    H. V. R. Dias, H. V. K. Diyabalanage, M. A. Rawashdeh-Omary, M. A. Franzman, and M. A. Omary, J. Am. Chem. Soc. 125, 12072 (2003).CrossRefGoogle Scholar
  29. 29.
    P. C. Ford, E. Cariati, and J. Bourassa, Chem. Rev. 99, 3625 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. N. Babkina
    • 1
  • N. V. Nikonorov
    • 1
  • A. I. Sidorov
    • 1
  • P. S. Shirshnev
    • 1
  • T. A. Shakhverdov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations