Advertisement

Optics and Spectroscopy

, Volume 115, Issue 6, pp 906–930 | Cite as

Holographic polymer materials with diffusion development: Principles, arrangement, investigation, and applications

  • A. V. Veniaminov
  • U. V. Mahilny
Holography

Abstract

We present a review of information that has been published in the scientific literature on the mechanism of formation (development, enhancement) of holograms at the expense of the photochemical attachment of phenanthrenequinone molecules and other compounds to polymer chains and diffusion mixing of unreacted molecules, on different types of light-sensitive materials that realize this mechanism, on the application of these materials to create volume holographic elements, on recording of information, and for research purposes.

Keywords

Refractive Index PMMA Photopolymerization Diffraction Efficiency Latent Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Stepanov, Rep. Prog. Phys. 57, 39 (1994).ADSGoogle Scholar
  2. 2.
    A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, Proc. SPIE-Int. Soc. Opt. Eng. 3904, 195 (1999).ADSGoogle Scholar
  3. 3.
    A. I. Ryskin, A. S. Shcheulin, A. E. Angervaks, S. A. Kazanskii, A. K. Kupchikov, A. V. Veniaminov, and Yu. L. Korzinin, in Proceedings of the All-Russia Seminar “Yurii Nikolaevich Denisyuk-the Founder of Domestic Holography” (St. Petersburg, 2007), p. 281.Google Scholar
  4. 4.
    W. Krug and H.-G. Weide, Wissenschaftliche Photographie in der Anwendung (Akademische Verlagsgesellschaft Geest & Portig K.-G, Leipzig, 1972; Mir, Moscow, 1975).Google Scholar
  5. 5.
    W. S. Colburn and K. A. Haines, Appl. Opt. 10, 1636 (1971).ADSGoogle Scholar
  6. 6.
    D. J. Lougnot and C. Turck, Pure Appl. Opt. 1, 269 (1992).ADSGoogle Scholar
  7. 7.
    W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, Proc. SPIE-Int. Soc. Opt. Eng. 1212–03, 20 (1990).ADSGoogle Scholar
  8. 8.
    G. Zhao and P. Mouroulis, J. Mod. Opt. 41, 1929 (1994).ADSGoogle Scholar
  9. 9.
    G. M. Karpov, V. V. Obukhovskii, and T. N. Smirnova, Opt. Spectrosc. 81(6), 947 (1996).ADSGoogle Scholar
  10. 10.
    G. M. Karpov, V. V. Obukhovskii, T. N. Smirnova, and T. A. Sarbaev, Opt. Spectrosc. 82(1), 131 (1997).ADSGoogle Scholar
  11. 11.
    H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, Semicond. Phys. Quant. Opt. Optoelectron. 2, 66 (1999).Google Scholar
  12. 12.
    G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, Opt. Commun. 174, 391 (2000).ADSGoogle Scholar
  13. 13.
    S. Piazzolla and B. K. Jenkins, J. Opt. Soc. Am. 17, 1147 (2000).ADSGoogle Scholar
  14. 14.
    J. T. Sheridan and J. R. Lawrence, J. Opt. Soc. Am. A 17, 1108 (2000).ADSGoogle Scholar
  15. 15.
    J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, J. Opt. Soc. Am. 19, 621 (2002).ADSGoogle Scholar
  16. 16.
    S.-D. Wu and E. N. Glytsis, J. Opt. Soc. Am. B 20(6), 1177 (2003).ADSGoogle Scholar
  17. 17.
    J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuño, J. Opt. Soc. Am. 22, 407 (2005).ADSGoogle Scholar
  18. 18.
    J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, Opt. Express 13, 6990 (2005).ADSGoogle Scholar
  19. 19.
    J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O. Neill, J. T. Sheridan, S. Gallego, and C. Neipp, Proc. SPIE-Int. Soc. Opt. Eng. 5827, 95 (2005).ADSGoogle Scholar
  20. 20.
    M. R. Gleeson and J. T. Sheridan, J. Optics. A 11, 024008 (2009).ADSGoogle Scholar
  21. 21.
    J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, Appl. Opt. 39, 2353 (2000).ADSGoogle Scholar
  22. 22.
    R. T. Ingwall and D. Waldman, SPIE’s International Technical Group Newsletter: Holography 11(2), 1 (2000).Google Scholar
  23. 23.
    L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, Opt. Lett. 24, 487 (1999).ADSGoogle Scholar
  24. 24.
    W. L. Wilson, K. Curtis, M. Tackitt, A. Hill, A. Hale, M. Schilling, C. Boyd, S. Campbell, L. Dhar, and A. Harris, Opt. Quantum Electron. 32, 393 (2000).Google Scholar
  25. 25.
    K. R. Curtis, L. Dhar, and M. G. Schnoes, US Patent No. 6650447 (2003).Google Scholar
  26. 26.
    G. I. Lashkov and V. I. Sukhanov, Opt. Spectrosc. 44(6), 590 (1978).ADSGoogle Scholar
  27. 27.
    G. I. Lashkov and E. N. Bodunov, Opt. Spectrosc. 47, 625 (1979).ADSGoogle Scholar
  28. 28.
    V. I. Sukhanov, Sov. Phys.-Uspekhi 29, 289 (1986).ADSGoogle Scholar
  29. 29.
    G. I. Lashkov, Sov. Phys.-Uspekhi 29, 288 (1986).ADSGoogle Scholar
  30. 30.
    V. I. Sukhanov, A. V. Veniaminov, A. I. Ryskin, and N. V. Nikonorov, in Proceedings of the All-Russia Seminar “Yurii Nikolaevich Denisyuk-the Founder of Domestic Holography” (St. Petersburg, 2007), p. 262.Google Scholar
  31. 31.
    N. S. Shelekhov, O. V. Bandyuk, A. P. Popov, and A. O. Rebezov, in Optical Holography with Recording in Three-Dimensional Media, Ed. by Yu. N. Denisyuk (Nauka, Leningrad, 1986) [in Russian].Google Scholar
  32. 32.
    N. S. Shelekhov, A. P. Popov, O. V. Bandyuk, A. O. Rebezov, and G. I. Lashkov, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 31, 14 (1986).Google Scholar
  33. 33.
    V. L. Alekseev, V. I. Sukhanov, and N. S. Shelekhov, Opt. Spektrosk. 66, 1351 (1989).Google Scholar
  34. 34.
    N. S. Shelekhov and V. I. Sukhanov, in Optical Holography with Recording in Three-Dimensional Media, Ed. by Yu. N. Denisyuk (Nauka, Leningrad, 1989), p. 14 [in Russian].Google Scholar
  35. 35.
    A. P. Popov, N. S. Shelekhov, and O. V. Bandyuk, Theor. Exp. Chem. 22, 219 (1986).Google Scholar
  36. 36.
    O. V. Bandyuk, N. S. Shelekhov, A. P. Popov, and M. Danilova, J. Appl. Chem. USSR 61, 865 (1988).Google Scholar
  37. 37.
    C. Durou, J. P. Hot, and R. Lefèvre, Nouv. Rev. d’Optiq. Appl. 7, 87 (1976).ADSGoogle Scholar
  38. 38.
    M. C. Cole and M. R. Ayres, US Patent No. 7678507 (2010).Google Scholar
  39. 39.
    E. A. Chandross, W. J. Tomlinson, and G. D. Aumiller, Appl. Opt. 17, 566 (1978).ADSGoogle Scholar
  40. 40.
    E. A. Chandross, W. J. Tomlinson, and G. D. Aumiller, J. Opt. Soc. Am. 66, 1083 (1976).ADSGoogle Scholar
  41. 41.
    G. I. Lashkov, A. P. Popov, and O. B. Ratner, Opt. Spectrosc. (USSR) 52, 350 (1982).ADSGoogle Scholar
  42. 42.
    K. W. Rhee, D. A. Gabriel, and C. S. Johnson, J. Phys. Chem. 88, 4010 (1984).Google Scholar
  43. 43.
    S. Park, J. Sung, H. Kim, and T. Chang, J. Phys. Chem. 95, 7121 (1991).Google Scholar
  44. 44.
    C. S. Johnson, J. Opt. Soc. Am. B 2, 317 (1985).ADSGoogle Scholar
  45. 45.
    D. R. Spiegel, A. H. Marshall, N. T. Jukam, H. S. Park, and T. Chang, J. Chem. Phys. 109, 267 (1998).ADSGoogle Scholar
  46. 46.
    D. R. Spiegel, A. L. Thompson, and W. C. Campbell, J. Chem. Phys. 114, 3842 (2001).ADSGoogle Scholar
  47. 47.
    W. Schärtl, in Soft Matter Characterization, Ed. by R. Borsali and R. Pecora (Springer, New York, 2008), p. 678.Google Scholar
  48. 48.
    H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, New York, 1986).Google Scholar
  49. 49.
    J. L. Xia, S. S. Gong, and C. H. Wang, J. Phys. Chem. 91, 5805 (1987).Google Scholar
  50. 50.
    C. H. Wang and J. L. Xia, J. Phys. Chem. 96, 190 (1992).Google Scholar
  51. 51.
    J. Zhang and C. H. Wang, J. Phys. Chem. 90, 2296 (1986).Google Scholar
  52. 52.
    J. Zhang, C. H. Wang, and Z.-X. Chen, J. Chem. Phys. 85, 5359 (1986).ADSGoogle Scholar
  53. 53.
    J. Zhang, C. H. Wang, and D. Ehlich, Macromolecules 19, 1390 (1986).ADSGoogle Scholar
  54. 54.
    J. L. Xia, C. H. Wang, and B. Y. Li, Macromolecules 23, 2139 (1990).Google Scholar
  55. 55.
    C. H. Wang, J. L. Xia, and L. Yu, Macromolecules 24, 3638 (1991).ADSGoogle Scholar
  56. 56.
    A. V. Veniaminov and E. Bartsch, Opt. Spectrosc. 101(2), 290 (2006).ADSGoogle Scholar
  57. 57.
    V. V. Mogil’nyi, M. M. Sidorenko, and A. I. Stankevich, Vestn. BGU, Ser. 1, No. 2, 21 (1991).Google Scholar
  58. 58.
    V. V. Mogil’nyi and Yu. V. Gritsai, Opt. Spectrosc. 83(5), 770 (1997).ADSGoogle Scholar
  59. 59.
    Yu. V. Gritsai and V. V. Mogil’nyi, Opt. Spectrosc. 90(6), 902 (2001).ADSGoogle Scholar
  60. 60.
    V. V. Mogil’nyi and Yu. V. Gritsai, Tech. Phys. Lett. 27(1), 60 (2001).Google Scholar
  61. 61.
    Yu. V. Gritsai and V. V. Mogil’nyi, Opt. Spectrosc. 95(3), 486 (2003).ADSGoogle Scholar
  62. 62.
    G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. Gerasimova, I. Solomatine, and D. Psaltis, Opt. Lett. 25, 607 (2000).ADSGoogle Scholar
  63. 63.
    A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, Opt. Spectrosc. 70, 505 (1991).ADSGoogle Scholar
  64. 64.
    V. I. Sukhanov, Yu. V. Ashcheulov, and A. E. Petnikov, Sov. Tech. Phys. Lett. 10, 387 (1984).Google Scholar
  65. 65.
    A. P. Popov, V. F. Goncharov, A. V. Veniaminov, and V. A. Lyubimtsev, Opt. Spectrosc. 66, 1 (1989).ADSGoogle Scholar
  66. 66.
    J. J. Bohning and K. Weiss, J. Am. Chem. Soc. 88, 2893 (1966).Google Scholar
  67. 67.
    P. A. Carapellucci, H. P. Wolf, and K. Weiss, J. Am. Chem. Soc. 91, 4635 (1969).Google Scholar
  68. 68.
    K. Maruyama, T. Otsuki, and Y. Naruta, Bull. Chem. Soc. Jpn. 49, 791 (1976).Google Scholar
  69. 69.
    D. M. Togashi and D. E. Nicodem, Spectrochim. Acta A 60(13), 3205 (2004).ADSGoogle Scholar
  70. 70.
    A. V. Kutsenova, N. B. Sul’timova, and P. P. Levin, Russ. J. Phys. Chem. B 4, 834 (2010).Google Scholar
  71. 71.
    S. Farid, D. Hess, G. Pfundt, K. H. Scholz, and G. Steffan, Chem. Commun. (London) 434, 638 (1968).Google Scholar
  72. 72.
    Y. Harada, S. Watanabe, T. Suzuki, and T. Ichimura, J. Photochem. Photobiol. A 170, 161 (2005).Google Scholar
  73. 73.
    M. P. Shurygina, A. Kurskii, N. O. Druzhkov, S. A. Chesnokov, and G. A. Abakumov, High Energy Chem. 44, 234 (2010).Google Scholar
  74. 74.
    G. W. Gruber, US Patent, No. 4054683 A.Google Scholar
  75. 75.
    E. Hasegawa, H. Ono, and S. Tanaka, US Patent, No. 4304838 (1977).Google Scholar
  76. 76.
    Aldrich Polymer Products Application and Reference Information (Aldrich Chemical Co., Inc., 1999).Google Scholar
  77. 77.
    D. Hong and C. J. Kim, J. Korean Chem. Soc. 37, 271 (1993).Google Scholar
  78. 78.
    D. N. Butovetskii, N. Kovshova, G. P. Krupnov, V. I. Bystrov, and L. M. Shipova, RF Patent No. 2054706.Google Scholar
  79. 79.
    J.-H. Chen, C.-T. Yang, C.-H. Huang, M.-F. Hsu, and T.-R. Jeng, IEEE Transactions on Magnetics 45, 2256 (2009).ADSGoogle Scholar
  80. 80.
    A. S. Cherkasov, N. S. Shelekhov, O. V. Bandyuk, T. V. Veselova, and I. E. Obyknovennaya, Opt. Spectrosc. 71, 201 (1991).ADSGoogle Scholar
  81. 81.
    N. S. Shelekhov and O. V. Bandyuk, J. Appl. Chem. USSR 64, 2467 (1991).Google Scholar
  82. 82.
    M. Burg, US Patent, No. 3561969 (1967).Google Scholar
  83. 83.
    Z. Chen, R. Wang, and Z. Lu, Proc. SPIE-Int. Soc. Opt. Eng. 4930, 524 (2002).Google Scholar
  84. 84.
    W. D. Cook, Polymer 33, 600 (1992).Google Scholar
  85. 85.
    E. Andrzejewska, L. A. Linden, and J. F. Rabek, Macromol. Chem. Phys. 199, 441 (1998).Google Scholar
  86. 86.
    C. Bibaut-Renauld, D. Burget, J. P. Fouassier, C. G. Varelas, J. Thomatos, G. Tsagaropoulos, L. O. Ryrfors, and O. J. Karlsson, J. Polymer Sci. A 40, 3171 (2002).Google Scholar
  87. 87.
    J. Jakubiak and J. F. Rabek, Polimery 44, 447 (1999).Google Scholar
  88. 88.
    J. Jakubiak, X. Allonas, J. P. Fouassier, A. Sionkowska, E. Andrzejewska, L. A. Linden, and J. F. Rabek, Polymer 44, 5219 (2003).Google Scholar
  89. 89.
    L. F. J. Schneider, L. M. Cavalcante, S. Consani, and J. L. Ferracane, Dental Materials 25, 369 (2009).Google Scholar
  90. 90.
    J. Mosnaček and I. Luka, J. Photochem. Photobiol. A 151, 95 (2002).Google Scholar
  91. 91.
    R. A. Bartolini and A. Bloom, US Patent, No. 3926637 (1973).Google Scholar
  92. 92.
    A. Bloom, R. A. Bartolini, and D. L. Ross, Appl. Phys. Lett. 24, 612 (1974).ADSGoogle Scholar
  93. 93.
    R. A. Bartolini, A. Bloom, and J. S. Escher, Appl. Phys. Lett. 28, 506 (1976).ADSGoogle Scholar
  94. 94.
    A. Bloom, R. A. Bartolini, P. L. K. Hung, and D. L. Ross, Appl. Phys. Lett. 29, 483 (1976).ADSGoogle Scholar
  95. 95.
    A. Bloom, R. A. Bartolini, and P. L. K. Hung, Polymer Engin. Sci. 17, 356 (1977).Google Scholar
  96. 96.
    E. S. Gyul’nazarov, T. N. Smirnova, E. A. Tikhonov, and M. T. Shpak, Ukr. Phys. J. 33, 8 (1988).Google Scholar
  97. 97.
    O. V. Sakhno, T. N. Smirnova, and E. A. Tikhonov, Tech. Phys. 38, 1071 (1993).Google Scholar
  98. 98.
    T. N. Smirnova, O. V. Sakhno, I. A. Strelets, and E. A. Tikhonov, Tech. Phys. 43, 708 (1998).Google Scholar
  99. 99.
    Y. L. Freilich, M. Levy, and S. Reich, J. Polymer Sci. A 15, 1811 (1977).Google Scholar
  100. 100.
    J. Zhang, B. K. Yu, and C. H. Wang, J. Phys. Chem. 90, 1299 (1986).Google Scholar
  101. 101.
    C. H. Wang and J. L. Xia, Macromolecules 21, 3519 (1988).ADSGoogle Scholar
  102. 102.
    J. Zhang and C. H. Wang, Macromolecules 21, 1811 (1988).ADSGoogle Scholar
  103. 103.
    C. H. Wang and J. L. Xia, Macromolecules 22, 2019 (1989).ADSGoogle Scholar
  104. 104.
    A. P. Popov, A. V. Veniaminov, and V. F. Goncharov, RF Patent No. 2035764.Google Scholar
  105. 105.
    O. V. Andreeva, O. V. Bandyuk, A. A. Paramonov, A. S. Cherkasov, E. R. Gavrilyuk, and P. V. Andreev, J. Opt. Technol. 67, 1043 (2000).ADSGoogle Scholar
  106. 106.
    N. V. Ionina, O. V. Andreeva, O. V. Bandyuk, V. N. Mi-khailov, and A. A. Paramonov, J. Opt. Technol. 71, 265 (2004).ADSGoogle Scholar
  107. 107.
    O. V. Andreeva, O. V. Bandyuk, A. A. Paramonov, A. P. Kushnarenko, V. V. Lesnichii, A. P. Nacharov, and N. V. Andreeva, J. Opt. Technol. 73, 625 (2006).ADSGoogle Scholar
  108. 108.
    A. V. Veniaminov, O. V. Bandyuk, and O. V. Andreeva, J. Opt. Technol. 75, 306 (2008).Google Scholar
  109. 109.
    O. V. Andreeva, O. V. Bandyuk, A. A. Paramonov, A. I. Golubka, and N. V. Andreeva, J. Opt. Technol. 75, 650 (2008).Google Scholar
  110. 110.
    O. V. Andreeva and O. V. Bandyuk, in Holograms-Recording Materials and Applications, Ed. by I. Naydenova (InTech, 2011), p. 45.Google Scholar
  111. 111.
    G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, Opt. Lett. 23, 1310 (1998).ADSGoogle Scholar
  112. 112.
    G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, Proc. SPIE-Int. Soc. Opt. Eng. 3623, 234 (1999).ADSGoogle Scholar
  113. 113.
    M. S. Shahriar, L. Wong, M. Bock, B. Ham, P. R. Hemmer, in Proceedings of the Symposium on Electrooptics: Pesent and Future (OSA, 1998), Vol. XXIII, p. 97.Google Scholar
  114. 114.
    S. Ezekiel, S. M. Shahriar, B. S. Ham, X.-W. Xia, S. Smith, and V. Sudarshanam, Report 140 (MIT, RLE, 1998). p. 201.Google Scholar
  115. 115.
    S. Ezekiel, S. M. Shahriar, B. S. Ham, A. Kumarakrishnan, V. Sudarshanam, X.-W. Xia, Report 141 (MIT, RLE, 1999). p. 204.Google Scholar
  116. 116.
    R. K. Kostuk, W. Maeda, and C.-H. Chen, Proc. SPIE-Int. Soc. Opt. Eng. 5939, 593904 (2005).Google Scholar
  117. 117.
    Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, Opt. Lett. 33, 566 (2008).ADSGoogle Scholar
  118. 118.
    M. S. Shahriar, R. Tripathi, M. Kleinschmit, J. Donoghue, W. Weathers, M. Huq, and J. T. Shen, Opt. Lett. 28, 525 (2003).ADSGoogle Scholar
  119. 119.
    M. S. Shahriar, R. Tripathi, M. Huq, and J. T. Shen, Opt. Eng. 43, 1856 (2004).Google Scholar
  120. 120.
    H. Yum, P. Hemmer, R. Tripathi, J. Shen, and M. Shahriar, Opt. Lett. 29, 1784 (2004).ADSGoogle Scholar
  121. 121.
    M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J. K. Lee, and A. Heifetz, Opt. Commun. 245, 67 (2005).ADSGoogle Scholar
  122. 122.
    A. Heifetz, G. S. Pati, J. T. Shen, J.-K. Lee, M. S. Shahriar, C. Phan, and M. Yamamoto, Appl. Opt. 45, 6148 (2006).ADSGoogle Scholar
  123. 123.
    J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, Opt. Commun. 259, 484 (2006).ADSGoogle Scholar
  124. 124.
    J.-K. Lee, J. T. Shen, and M. S. Shahriar, Opt. Commun. 277, 63 (2007).ADSGoogle Scholar
  125. 125.
    H. Yum, P. Hemmer, A. Heifetz, J. Shen, J. Lee, R. Tripathi, and M. Shahriar, Opt. Lett. 30, 3012 (2005).ADSGoogle Scholar
  126. 126.
    R. Burzynski, D. N. Kumar, M. K. Casstevens, D. Tyczka, S. Ghosal, P. M. Kurtz, and J. F. Weibel, Proc. SPIE-Int. Soc. Opt. Eng. 4087, 741 (2000).ADSGoogle Scholar
  127. 127.
    R. I. Billmers, E. J. Billmers, R. Burzynski, J. F. Weibel, L. H. I. Heverley, M. K. Casstevens, T. P. Curran, and V. M. Contarino, Proc. SPIE-Int. Soc. Opt. Eng. 4659, 156 (2002).ADSGoogle Scholar
  128. 128.
    R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, US Patent, No. 6344297 (2002).Google Scholar
  129. 129.
    R. I. Billmers, E. J. Billmers, M. E. Ludwig, R. A. Lucente, R. Burzynski, and M. Casstevens, Frontiers in Optics (FiO, Tucson (2003), p. ThJJ4.Google Scholar
  130. 130.
    R. Burzynski, J. F. Weibel, M. K. Casstevens, R. I. Billmers, and E. J. Billmers, Proc. SPIE-Int. Soc. Opt. Eng. 4833, 577 (2003).Google Scholar
  131. 131.
    R. Burzynski, D. N. Kumar, S. Ghosal, and D. R. Tyczka, US Patent, No. 7129008.Google Scholar
  132. 132.
    U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, Proc. SPIE-Int. Soc. Opt. Eng. 5956, 59561 (2005).ADSGoogle Scholar
  133. 133.
    U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, I. N. Agishev, S. Lehn, V. Matusevich, L. Wenke, and R. Kowarschik, DGAO Proc. 13 (2004).Google Scholar
  134. 134.
    U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, in Holography 2005: Materials for Holographic and Optical Data Storage (GLOSPI BAS, 2005), p. 48.Google Scholar
  135. 135.
    V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, and I. N. Agishev, CLEO/Europe, 191 (2005).Google Scholar
  136. 136.
    D. N. Marmysh, V. V. Mogilny, and E. A. Tolstik, Bull. Rus. Acad. Sci.: Phys. 70, 2056 (2006).Google Scholar
  137. 137.
    U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, Appl. Phys. 82, 299 (2006).Google Scholar
  138. 138.
    U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Y. Matusevich, and R. M. Kowarschik, Proc. SPIE-Int. Soc. Opt. Eng. 6252, 62520 (2006).Google Scholar
  139. 139.
    U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, J. Opt. A 10, 085302 (2008).ADSGoogle Scholar
  140. 140.
    V. Matusevich, A. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, Opt. Express 16, 1552 (2008).ADSGoogle Scholar
  141. 141.
    S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, Opt. Lett. 25, 451 (2000).ADSGoogle Scholar
  142. 142.
    S.-H. Lin, Proc. SPIE-Int. Soc. Opt. Eng. 5206, 1 (2003).ADSGoogle Scholar
  143. 143.
    Y. N. Hsiao, W. T. Whang, and S. H. Lin, Opt. Eng. 43, 1993 (2004).ADSGoogle Scholar
  144. 144.
    S. H. Lin, J.-H. Lin, P.-L. Chen, Y.-N. Shiao, and K. Y. Hsu, J. Nonlin. Opt. Phys. Mater. 15, 239 (2006).ADSGoogle Scholar
  145. 145.
    S.-H. Lin, P.-L. Chen, Y.-N. Hsiao, and W.-T. Whang, Opt. Commun. 281, 559 (2008).ADSGoogle Scholar
  146. 146.
    J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, Opt. Commun. 194, 103 (2001).ADSGoogle Scholar
  147. 147.
    X. Sun, J. Wang, Y. Gai, J. Zhang, and Y. Jiang, Proc. SPIE-Int. Soc. Opt. Eng. 5966, 113 (2005).ADSGoogle Scholar
  148. 148.
    J. Wang and X. Sun, Proc. SPIE-Int. Soc. Opt. Eng. 7125, 712504 (2009).Google Scholar
  149. 149.
    J. Wang, X.-D. Sun, S.-H. Luo, Y.-Y. Jiang, and Q.-X. Meng, Chin. Phys. 18, 4326 (2009).Google Scholar
  150. 150.
    H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, Opt. Express 18, 6447 (2010).ADSGoogle Scholar
  151. 151.
    J. Wang, X. Sun, S. Luo, and Y. Jiang, Opt. Commun. 283, 1707 (2010).ADSGoogle Scholar
  152. 152.
    J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, and P. Hemmer, Opt. Eng. 36, 1700 (1997).ADSGoogle Scholar
  153. 153.
    N. O. Reingand, I. V. Semenova, and A. Popov, Proc. SPIE-Int. Soc. Opt. Eng. 3637, 166 (1999).ADSGoogle Scholar
  154. 154.
    N. O. Reingand, I. V. Semenova, and A. Popov, Proc. SPIE-Int. Soc. Opt. Eng. 3740, 258 (1999).ADSGoogle Scholar
  155. 155.
    I. V. Semenova, N. O. Reingand, A. Popov, and A. V. Veniaminov, Proc. SPIE-Int. Soc. Opt. Eng. 4296, 292 (2001).ADSGoogle Scholar
  156. 156.
    P. Hemmer, S. Shahriar, J. Ludman, and H. J. Caulfield, in Holography for the New Millennium, Ed. by J. Ludman, H. J. Caulfield, and J. N. Y. Riccobono (Springer, New York, 2002), p. 179.Google Scholar
  157. 157.
    O. V. Andreeva, N. V. Ionina, O. V. Bandyuk, and A. A. Paramonov, J. Opt. Technol. 71, 680 (2004).ADSGoogle Scholar
  158. 158.
    S.-H. Lin and K. Y. Hsu, Proc. SPIE-Int. Soc. Opt. Eng. 4110, 77 (2000).ADSGoogle Scholar
  159. 159.
    S. Yiou, F. Balembois, P. Georges, and J.-P. Huignard, CLEO/Europe, 157 (2003).Google Scholar
  160. 160.
    Y. N. Hsiao, W. T. Whang, S. H. Lin, and K. Y. Hsu, Proc. SPIE-Int. Soc. Opt. Eng. 5560, 34 (2004).ADSGoogle Scholar
  161. 161.
    J. Lumeau and M. Lequime, Appl. Opt. 45, 6099 (2006).ADSGoogle Scholar
  162. 162.
    M. Gruber, U. Vieth, K.-Y. Hsu, and S.-H. Lin, DGaO-Proc. 108, 47 (2007).Google Scholar
  163. 163.
    M. Sollner, Y.-N. Hsiao, S.-H. Lin, K.-Y. Hsu, and M. Gruber, Rep. fernuniversität hagen (2008).Google Scholar
  164. 164.
    D. Marmysh and U. Mahilny, in Abstracts of the 8th Inter-national Conference “Interaction of Radiation with Solids” (Minsk, 2009), p. 335.Google Scholar
  165. 165.
    A. V. Veniaminov, Yu. N. Sedunov, A. P. Popov, and O. V. Bandyuk, Opt. Spectrosc. 81, 617 (1996).ADSGoogle Scholar
  166. 166.
    N. V. Ionina, O. V. Andreeva, O. V. Bandyuk, and A. A. Paramonov, J. Opt. Technol. 69, 403 (2002).ADSGoogle Scholar
  167. 167.
    J. Mumbru, PhD Thesis (California Institute of Technology, Pasadena, 2002).Google Scholar
  168. 168.
    K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, Opt. Eng. 42, 1390 (2003).ADSGoogle Scholar
  169. 169.
    A. Veniaminov and E. Bartsch, J. Opt. A 4, 387 (2002).ADSGoogle Scholar
  170. 170.
    Y. Gritsai, L. M. Goldenberg, and J. Stumpe, J. Opt. 12, 015107 (2010).ADSGoogle Scholar
  171. 171.
    G. I. Lashkov, A. V. Veniaminov, and O. B. Ratner, Polymer Sci. USSR 28, 487 (1986).Google Scholar
  172. 172.
    K. Y. Hsu, S. H. Lin, W.-T. Whang, and W.-Z. Chen, Proc. SPIE-Int. Soc. Opt. Eng. 3801, 66 (1999).ADSGoogle Scholar
  173. 173.
    D. Yu, H. Liu, Y. Jiang, and X. Sun, Opt. Commun. 283, 4219 (2010).ADSGoogle Scholar
  174. 174.
    D. Yu, H. Wang, J. Wang, Y. Jiang, X. Sun, and H. Liu, Opt. Eng. 50, 085803 (2011).ADSGoogle Scholar
  175. 175.
    F. H. Mok, G. W. Burr, and D. Psaltis, Opt. Lett. 21, 896 (1996).ADSGoogle Scholar
  176. 176.
    S.-H. Lin and K. Y. Hsu, Proc. SPIE-Int. Soc. Opt. Eng. 4929, 208 (2002).ADSGoogle Scholar
  177. 177.
    K. Y. Hsu and S.-H. Lin, Proc. SPIE-Int. Soc. Opt. Eng. 5206, 142 (2003).ADSGoogle Scholar
  178. 178.
    C.-I. Chuang, Y.-N. Hsiao, S.-H. Lin, and Y.-F. Chao, Opt. Commun. 283, 3279 (2010).ADSGoogle Scholar
  179. 179.
    A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Y. Ponosov, Y. Ashcheulov, and A. Veniaminov, J. Opt. A 2, 494 (2000).ADSGoogle Scholar
  180. 180.
    A. P. Popov, Yu. N. Sedunov, and A. V. Veniaminov, Opt. Spectrosc. 71, 295 (1991).ADSGoogle Scholar
  181. 181.
    A. P. Popov, A. V. Veniaminov, and Y. N. Sedunov, Opt. Commun. 110, 18 (1994).ADSGoogle Scholar
  182. 182.
    A. P. Popov, A. V. Veniaminov, and Y. N. Sedunov, Proc. SPIE-Int. Soc. Opt. Eng. 2215, 64 (1994).ADSGoogle Scholar
  183. 183.
    S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, in Digest of the LEOS Summer Topical Meetings (2007), p. 208.Google Scholar
  184. 184.
    A. V. Veniaminov and Yu. N. Sedunov, Polymer Sci. 38, 59 (1996).Google Scholar
  185. 185.
    C.-F. Chen, J.-J. Jiang, R.-J. Chiou, and Y.-H. Lin, US Patent Application, No. 12/756340 (2010).Google Scholar
  186. 186.
    Yu. V. Gritsai and V. V. Mogil’nyi, Tech. Phys. Lett. 32, 10 (2006).Google Scholar
  187. 187.
    Y. V. Gritsai and U. V. Mahilny, Proc. SPIE-Int. Soc. Opt. Eng. 6728, 67283 (2007).ADSGoogle Scholar
  188. 188.
    D. N. Marmysh, A. I. Stankevich, and V. V. Mogil’nyi, J. Opt. Technol. 79, 116 (2012).Google Scholar
  189. 189.
    D. N. Marmysh and U. V. Mahil’ny, Vestnik BGU, ser. 1, 21 (2005) [in Russian].Google Scholar
  190. 190.
    M. G. Krakovyak, E. V. Anufrieva, V. B. Lushchik, N. S. Shelekhov, and S. S. Skorokhodov, J. Macromol. Sci., A 12, 789 (1978).Google Scholar
  191. 191.
    S. H. Lin, J.-H. Lin, Y.-N. Hsiao, and K. Y. Hsu, Proc. SPIE-Int. Soc. Opt. Eng. 6314, 631407 (2006).Google Scholar
  192. 192.
    U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, Proc. SPIE-Int. Soc. Opt. Eng. 6733, 673324 (2007).Google Scholar
  193. 193.
    L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, Opt. Express 15, 8543 (2007).ADSGoogle Scholar
  194. 194.
    D. Hoff, E. Tolstik, V. Matusevich, R. Kowarschik, Y. I. Matusevich, L. P. Krul, and L. B. Yakimtsova, in Joint Meeting of the DGAO-SIOF Societies (2009).Google Scholar
  195. 195.
    E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, IEEE Photon. Technol. Lett. 21(12), 784 (2009).ADSGoogle Scholar
  196. 196.
    Y.-F. Chen, Y.-N. Hsiao, S. H. Lin, K. Y. Hsu, W.-S. Cheng, and W.-T. Whang, J. Opt. A 11, 125409 (2009).ADSGoogle Scholar
  197. 197.
    S. H. Lin, P.-L. Chen, and J.-H. Lin, Opt. Eng. 48, 035802 (2009).ADSGoogle Scholar
  198. 198.
    P.-L. Chen, S. H. Lin, and K. Y. Hsu, in Abstracts of the 8th International Symposium on Display Holography (2009), p. 15.Google Scholar
  199. 199.
    E. Tolstik, E. Egorova, D. Hoff, V. Matusevich, L. B. Yakimtsova, Y. I. Matusevich, R. Kowarschik, and L. P. Krul, J. Polymer Res. 19 (2012) (DOI: 10.1007/s10965-011-9742-z).Google Scholar
  200. 200.
    V. Matusevich, E. Tolstik, R. Kowarschik, E. Egorova, Y. Matusevich, and L. Krul, Opt. Commun. 295, 79 (2013).ADSGoogle Scholar
  201. 201.
    J.-H. Lin, Y. N. Hsiao, S. H. Lin, and K. Y. Hsu, in Holography 2005: Materials for Holographic and Optical Data Storage (GLOSPI BAS, 2005), p. 37.Google Scholar
  202. 202.
    C.-J. Ko, Y.-L. Chang, Y.-N. Hsiao, P.-L. Chen, S.-H. Lin, W.-T. Whang, K.-Y. Hsu, M.-H. Tsai, and W.-Y. Tsang, J. Mod. Opt. 58(14), 1215 (2011).ADSGoogle Scholar
  203. 203.
    C.-J. Ko, Y.-N. Hsiao, S.-H. Lin, P.-L. Chen, W.-T. Whang, K. Y. Hsu, Y.-S. Hsiao, and C.-C. Chen, J. Appl. Polym. Sci. 127, 643 (2013).Google Scholar
  204. 204.
    Y.-N. Hsiao, W.-T. Whang, and S. H. Lin, Jpn. J. Appl. Phys. 44, 914 (2005).ADSGoogle Scholar
  205. 205.
    Y. N. Hsiao, W. T. Whang, S. H. Lin, and K. Y. Hsu, Jap. J. Appl. Phys., Pt. 1, 45, 8699 (2006).Google Scholar
  206. 206.
    D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, Opt. Commun. 284, 2784 (2011).ADSGoogle Scholar
  207. 207.
    W.-S. Cheng, W.-T. Whang, and Y.-C. Chang, Proc. SPIE-Int. Soc. Opt. Eng. 6620, 66201 (2007).Google Scholar
  208. 208.
    H. Liu, D. Yu, L. Yang, W. Wang, L. Zhang, H. Wang, and X. Sun, Opt. Commun. 285, 4993 (2012).ADSGoogle Scholar
  209. 209.
    N. Suzuki and Y. Tomita, Appl. Opt. 43, 2125 (2004).ADSGoogle Scholar
  210. 210.
    J. M. Russo, J. E. Castillo, and R. K. Kostuk, Proc. SPIE-Int. Soc. Opt. Eng. 6653, 66530 (2007).ADSGoogle Scholar
  211. 211.
    Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, in Digital Holography and Three-Dimensional Imaging (DH) (Vancouver, Canada, 2009), p. DTuB5.Google Scholar
  212. 212.
    Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, Opt. Lett. 35, 1269 (2010).ADSGoogle Scholar
  213. 213.
    D. Yu, H. Liu, Y. Jiang, and X. Sun, Opt. Express 19, 13787 (2011).ADSGoogle Scholar
  214. 214.
    H. P. Liu, D. Yu, J. Wang, Y. Y. Jiang, and X. D. Sun, Opt. Laser Technol. 44, 882 (2012).ADSGoogle Scholar
  215. 215.
    X. Sun and J. Wang, Proc. SPIE-Int. Soc. Opt. Eng. 8782, 878202 (2013).Google Scholar
  216. 216.
    G. Ramos, A. Alvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, Appl. Opt. 43, 4018 (2004).ADSGoogle Scholar
  217. 217.
    A. Fimia, P. Acebal, S. Blaya, L. Carretero, A. Murciano, and R. F. Madrigal, Proc. SPIE-Int. Soc. Opt. Eng. 7358, 735802 (2009).Google Scholar
  218. 218.
    P. Cheben and M. L. Calvo, Appl. Phys. Lett. 78, 1490 (2001).ADSGoogle Scholar
  219. 219.
    M. L. Calvo and P. Cheben, J. Opt. A 11, 024009 (2009).ADSGoogle Scholar
  220. 220.
    S. H. Lin, M. Gruber, Y. N. Hsiao, and K. Y. Hsu, Advances in Information Optics and Photonics, Ed. by A. T. Friberg and R. Dändliker (SPIE Press, New York, 2008), p. 317.Google Scholar
  221. 221.
    S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, J. Opt. A 11, 024012 (2009).ADSGoogle Scholar
  222. 222.
    S.-H. Lin, Y.-N. Hsiao, and K. Y. Hsu, in Abstracts of the 8th International Symposium on Display Holography (2009), p. 6.Google Scholar
  223. 223.
    A. P. Popov, A. V. Veniaminov, and V. F. Goncharov, Proc. SPIE-Int. Soc. Opt. Eng. 2215, 113 (1994).ADSGoogle Scholar
  224. 224.
    A. V. Veniaminov and H. Sillescu, Macromolecules 32, 1828 (1999).ADSGoogle Scholar
  225. 225.
    A. Veniaminov, E. Bartsch, I. Semenova, and A. Popov, Proc. SPIE-Int. Soc. Opt. Eng. 5216, 156 (2003).ADSGoogle Scholar
  226. 226.
    A. V. Veniaminov, E. Bartsch, and A. P. Popov, Opt. Spectrosc. 99, 744 (2005).ADSGoogle Scholar
  227. 227.
    N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, Proc. SPIE-Int. Soc. Opt. Eng. 4459, 29 (2001).ADSGoogle Scholar
  228. 228.
    P. Chen, Opt. Eng. 51, 030503 (2012).ADSGoogle Scholar
  229. 229.
    A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, J. Appl. Spectrosc. 76, 585 (2009).ADSGoogle Scholar
  230. 230.
    D. N. Marmysh and E. A. Tolstik, in Physics and Applications of Microwaves: Proceedings of the School Seminar (MGU, Zvenigorod, 2007), p. 60.Google Scholar
  231. 231.
    A. V. Veniaminov and H. Sillescu, Chem. Phys. Lett. 303, 499 (1999).ADSGoogle Scholar
  232. 232.
    D. Yu, H. Wang, H.-P. Liu, J. Wang, Y.-Y. Jiang, and X.-D. Sun, Chin. Phys. 20, 114217 (2011).Google Scholar
  233. 233.
    D. N. Marmysh and U. V. Mahilny, Wave Phenomena in Inhomogeneous Media: Proceedings of the XI All-Russia School Seminar (MGU, Moscow, 2008), Part 4, p. 59.Google Scholar
  234. 234.
    E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, Opt. Express 16, 11253 (2008).ADSGoogle Scholar
  235. 235.
    S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, J. Opt. Soc. Am. 28, 2833 (2011).ADSGoogle Scholar
  236. 236.
    J. Wang, X. Sun, S. Luo, and Y. Jiang, Opt. Mater. 32, 261 (2009).ADSGoogle Scholar
  237. 237.
    H. Liu, D. Yu, and X. Sun, Proc. SPIE-Int. Soc. Opt. Eng. 7125, 71250 (2009).Google Scholar
  238. 238.
    H. Liu, D. Yu, Y. Jiang, and X. Sun, Appl. Phys. 95, 513 (2009).Google Scholar
  239. 239.
    I. V. Semenova, A. Popov, E. Bartsch, and A. Veniaminov, Proc. SPIE-Int. Soc. Opt. Eng. 5005, 1 (2003).Google Scholar
  240. 240.
    J. M. Russo, C.-H. Chen, and R. K. Kostuk, Proc. SPIE-Int. Soc. Opt. Eng. 6335, 633505 (2006).Google Scholar
  241. 241.
    V. F. Goncharov, A. P. Popov, and A. V. Veniaminov, Proc. SPIE-Int. Soc. Opt. Eng. 1238, 97 (1989).Google Scholar
  242. 242.
    J. M. Russo and R. K. Kostuk, Appl. Opt. 46, 7494 (2007).ADSGoogle Scholar
  243. 243.
    N. V. Ionina, O. V. Andreeva, O. V. Bandyuk, V. N. Mikhailov, and A. A. Paramonov, J. Opt. Technol. 72, 883 (2005).ADSGoogle Scholar
  244. 244.
    G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, in Technical Digest of Summaries of Papers Presented at CLEO (1998), p. 46.Google Scholar
  245. 245.
    G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, in Nonlinear Optics’98: Topical Meeting on Materials, Fundamentals, and Applications (1998), p. 311.Google Scholar
  246. 246.
    T.-W. Nee, S.-M. F. Nee, M. W. Kleinschmit, and M. S. Shahriar, J. Opt. Soc. Am. A 21, 532 (2004).MathSciNetADSGoogle Scholar
  247. 247.
    S. H. Lin, P.-L. Chen, C.-I. Chuang, Y.-F. Chao, and K. Y. Hsu, Opt. Lett. 36, 3039 (2011).ADSGoogle Scholar
  248. 248.
    N. V. Kukhtarev, T. V. Kukhtareva, J. Jones, E. W. Ward, S. S. Sarkisov, M. J. Curley, and D. Y. Sugak, Proc. SPIE-Int. Soc. Opt. Eng. 4774, 272 (2002).ADSGoogle Scholar
  249. 249.
    H. Kogelnik, C. V. Shank, T. P. Sosnowski, and A. Dienes, Appl. Phys. Lett. 16, 499 (1970).ADSGoogle Scholar
  250. 250.
    S. S. Duncan, J. A. McQuoid, and D. J. McCartney, Proc. SPIE-Int. Soc. Opt. Eng. 523, 196 (1985).ADSGoogle Scholar
  251. 251.
    A. Y. Tikhomirov, J. Munch, T. McKay, and J. Staromlyska, Opt. Quantum Electron. 31, 535 (1999).Google Scholar
  252. 252.
    G. A. Rakuljic and V. Leyva, Opt. Lett. 18, 459 (1993).ADSGoogle Scholar
  253. 253.
    D. E. Keys, W. K. Smothers, and T. J. Trout, US Patent, No. 4965152 (1990).Google Scholar
  254. 254.
    G. Zhang, G. Montemezzani, and P. Günter, Appl. Opt. 40, 2423 (2001).ADSGoogle Scholar
  255. 255.
    B. Yang, M. D. Morris, and H. Owen, Appl. Spectrosc. 45, 1533 (1991).ADSGoogle Scholar
  256. 256.
    A. F. Bell, L. Hecht, and L. D. Barron, J. Raman Spectrosc. 24, 633 (1993).ADSGoogle Scholar
  257. 257.
    J. Barbillat, B. Roussel, and E. Da Silva, J. Raman Spektrosc. 30, 745 (1999).ADSGoogle Scholar
  258. 258.
    H. E. Ives, J. Opt. Soc. Am. 1(2), 49 (1917).ADSGoogle Scholar
  259. 259.
    G. I. Lashkov and V. I. Sukhanov, Tr. Gos. Opt. Inst. 63, 18 (1987).Google Scholar
  260. 260.
    V. I. Sukhanov, A. E. Petnikov, and Yu. V. Ashcheulov, in Optical Holography Ed. by Yu. N. Denisyuk (Nauka, Leningrad, 1983), p. 56 [in Russian].Google Scholar
  261. 261.
    V. V. Kurbasov, V. I. Sukhanov, Yu. V. Ashcheulov, A. E. Petnikov, G. I. Lashkov, V. I. Shirokov, and Yu. N. Zyuzin, Preprint no. 293 (FIAN, 1985).Google Scholar
  262. 262.
    Yu. V. Ashcheulov, A. E. Petnikov, and V. I. Sukhanov, Sov. Tech. Phys. Lett. 11(10), 486 (1985)Google Scholar
  263. 263.
    I. V. Semenova, A. P. Popov, A. V. Veniaminov, and N. O. Reinhand, Proc. SPIE-Int. Soc. Opt. Eng. 3698, 910 (1999).ADSGoogle Scholar
  264. 264.
    I. V. Semenova, N. O. Reinhand, and A. Popov, Proc. SPIE-Int. Soc. Opt. Eng. 3740, 240 (1999).ADSGoogle Scholar
  265. 265.
    I. V. Semenova, N. O. Reingand, A. Popov, and A. V. Veniaminov, Proc. SPIE-Int. Soc. Opt. Eng. 3956, 289 (2000).ADSGoogle Scholar
  266. 266.
    R. I. Billmers, E. J. Billmers, M. E. Ludwig, R. Burzynski, J. F. Weibel, and M. K. Casstevens, CLEO/Europe 1, 2 (2004).Google Scholar
  267. 267.
    N. O. Reingand, I. V. Semenova, and A. Popov, Proc. SPIE-Int. Soc. Opt. Eng. 3897, 72 (1999).ADSGoogle Scholar
  268. 268.
    R. M. Waxler, D. Horowitz, and A. Feldman, Appl. Opt. 18, 101 (1979).ADSGoogle Scholar
  269. 269.
    A. Sato and R. K. Kostuk, Proc. SPIE-Int. Soc. Opt. Eng. 5216, 44 (2003).ADSGoogle Scholar
  270. 270.
    R. K. Kostuk, W. Maeda, C. H. Chen, I. Djordjevic, and B. Vasic, Appl. Opt. 44, 7581 (2005).ADSGoogle Scholar
  271. 271.
    W. K. Maeda, C.-H. Chen, and R. K. Kostuk, Frontiers in Optics (FiO) (OSA, Tucson, 2005).Google Scholar
  272. 272.
    J. E. Castillo, J. M. Russo, and R. K. Kostuk, Photonics Technol. Lett. IEEE 20, 1199 (2008).ADSGoogle Scholar
  273. 273.
    W. Maeda, PhD Thesis (Arizona, 2005).Google Scholar
  274. 274.
    I. A. Novikov, Tech. Phys. Lett. 26, 243 (2000).ADSGoogle Scholar
  275. 275.
    J. E. Ludman, J. R. Riccobono, N. O. Reingand, I. V. Semenova, Y. L. Korzinin, and M. S. Shahriar, Proc. SPIE-Int. Soc. Opt. Eng. 2532, 481 (1995).ADSGoogle Scholar
  276. 276.
    J. Ludman and J. Riccobono, in Holography for the New Millennium, Ed. by J. Ludman, H. J. Caulfield, and J. Riccobono (2002), p. 243.Google Scholar
  277. 277.
    M. M. Henrion, J. E. Ludman, G. A. Sobolev, M. S. Shahriar, S. B. Soboleva, and P. L. Hemmer, Proc. SPIE-Int. Soc. Opt. Eng. 3417, 195 (1998).ADSGoogle Scholar
  278. 278.
    J. E. Ludman, T. D. Upton, and D. Coolidge, Proc. SPIE-Int. Soc. Opt. Eng. 5005, 375 (2003).Google Scholar
  279. 279.
    S. Yiou, F. Balembois, P. Georges, and J.-P. Huignard, Opt. Lett. 28, 242 (2003).ADSGoogle Scholar
  280. 280.
    S. Yiou, G. Lucas-Leclin, F. Balembois, and P. Georges, Rapport Laboraroire Charles Fabry de l’Institut d’Optique (Paris, 2004), Vol. UMR 8501, p. 92.Google Scholar
  281. 281.
    J. Lumeau, V. Smirnov, A. Glebov, and L. B. Glebov, Proc. SPIE-Int. Soc. Opt. Eng. 7675, 76750 (2010).ADSGoogle Scholar
  282. 282.
    G. Barbastathis and D. J. Brady, Proc. IEEE 87, 2098 (1999).Google Scholar
  283. 283.
    Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, Frontiers in Optics (FiO) (OSA, Tucson, 2007), p. FWV7.Google Scholar
  284. 284.
    Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, Proc. SPIE-Int. Soc. Opt. Eng. 6912, 69120 (2008).ADSGoogle Scholar
  285. 285.
    Y. Luo, J. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, Opt. Express 18, 19273 (2010).ADSGoogle Scholar
  286. 286.
    P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, Opt. Eng. 49, 43001 (2010).Google Scholar
  287. 287.
    L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, Opt. Lett. 35, 2961 (2010).ADSGoogle Scholar
  288. 288.
    J. M. Castro, J. Brownlee, Y. Luo, E. de Leon, J. K. Barton, G. Barbastathis, and R. K. Kostuk, Appl. Opt. 50, 1038 (2011).Google Scholar
  289. 289.
    J. M. Castro, P. J. Gelsinger-Austin, J. K. Barton, and R. K. Kostuk, Appl. Opt. 50, 1382 (2011).ADSGoogle Scholar
  290. 290.
    Y. Luo, I. Zervantonakis, S. B. Oh, R. Kamm, and G. Barbastathis, Proc. SPIE-Int. Soc. Opt. Eng. 7891, 78910 (2011).ADSGoogle Scholar
  291. 291.
    E. E. de Leon, J. W. Brownlee, P. Gelsinger-Austin, and R. K. Kostuk, Appl. Opt. 51, 6952 (2012).ADSGoogle Scholar
  292. 292.
    S. B. Oh, Z.-Q. J. Lu, J.-C. Tsai, H.-H. Chen, G. Barbastathis, and Y. Luo, Opt. Lett. 38, 477 (2013).ADSGoogle Scholar
  293. 293.
    D. Gong, Z. Zhou, H. Liu, J. Wang, and H. Gao, Opt. Lasers Eng. 47, 662 (2009).Google Scholar
  294. 294.
    J. Donoghue, US Patent, No. 20020181035 (2002).Google Scholar
  295. 295.
    D. N. Marmysh and U. V. Mahilny, in Proceedings of the 9th International Conference “Applied Optics-2010” (St. Petersburg, 2010), Vol. 2, Chap. 1, p. 41.Google Scholar
  296. 296.
    Yu. Ts. Batomunkuev and N. A. Meshcheryakov, Izv. Vyssh. Uchebn. Zaved., Priborostr. 52, 43 (2009).Google Scholar
  297. 297.
    Yu. Ts. Batomunkuev and N. A. Meshcheryakov, Russ. Phys. J. 53, 680 (2010).zbMATHGoogle Scholar
  298. 298.
    E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, CLEO Europe-EQEC (2009), p. 1.Google Scholar
  299. 299.
    V. Matusevich, E. Tolstik, A. Winkler, and R. Kowarschik, Photonik 2, 44 (2010).Google Scholar
  300. 300.
    G. J. Steckman, PhD Thesis (California Institute of Technology, Pasadena, 2001).Google Scholar
  301. 301.
    G. J. Steckman, A. Pu, and D. Psaltis, Appl. Opt. 40, 3387 (2001).ADSGoogle Scholar
  302. 302.
    S. Bains, Laser Focus World 34(7) (1998).Google Scholar
  303. 303.
    S. Bains, EE Times, No. 1012, 79 (1998).Google Scholar
  304. 304.
    S. Bains, www.techweb.com (1998).
  305. 305.
    S. H. Lin and K. Y. Hsu, SPIE’s International Technical Group Newsletter: Holography 11(2), 5 (2000).Google Scholar
  306. 306.
    M.-L. Hsieh, Opt. Eng. 44, 090504 (2005).ADSGoogle Scholar
  307. 307.
    M.-L. Hsieh, S.-H. Lin, J.-H. Wang, K.-Y. Hsu, and D.-Y. Chiang, USA Patent Appl., No. 20090122375 (2009).Google Scholar
  308. 308.
    M. Sollner, U. Vieth, K. Y. Hsu, S. H. Lin, and M. Gruber, Proc. SPIE-Int. Soc. Opt. Eng. 7358, 73580 (2009).ADSGoogle Scholar
  309. 309.
    J. Wang and X. Sun, Proc. SPIE-Int. Soc. Opt. Eng. 7125, 712504 (2008).Google Scholar
  310. 310.
    S. H. Lin, K. Y. Hsu, W.-Z. Chen, and W.-T. Whang, Proc. SPIE-Int. Soc. Opt. Eng. 3801, 100 (1999).ADSGoogle Scholar
  311. 311.
    W.-C. Su, Y.-W. Chen, Y.-J. Chen, S.-H. Lin, and L.-K. Wang, Appl. Opt. 51, 1297 (2012).ADSGoogle Scholar
  312. 312.
    J. Li, L. Cao, H. Gu, X. Tan, Q. He, and G. Jin, Opt. Lett. 37, 936 (2012).ADSGoogle Scholar
  313. 313.
    T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, Opt. Lett. 38, 748 (2013).ADSGoogle Scholar
  314. 314.
    J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, IBM J. Res. Dev. 44, 341 (2000).Google Scholar
  315. 315.
    R. M. Shelby, Proc. SPIE-Int. Soc. Opt. Eng. 4659, 344 (2002).ADSGoogle Scholar
  316. 316.
    O. Kashin, E. Tolstik, V. Matusevich, and R. Kowarschik, J. Opt. Soc. Am. 26, 2152 (2009).ADSGoogle Scholar
  317. 317.
    E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, Opt. Express 19, 2739 (2011).ADSGoogle Scholar
  318. 318.
    E. Tolstik, Light Self-Trapping in Polymeric Media based on Polymethyl Methacrylate with Distributed Phenanthrenequinone Molecules. Dissert. Dr. rer. nat. (Friedrich-Schiller-Universität, Jena, 2011).Google Scholar
  319. 319.
    E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, Proc. SPIE-Int. Soc. Opt. Eng. 8429, 84290 (2012).ADSGoogle Scholar
  320. 320.
    M. Lequime and J. Lumeau, Proc. SPIE-Int. Soc. Opt. Eng. 5963, 596308 (2005).Google Scholar
  321. 321.
    O. V. Andreeva, O. V. Chistyakova, and N. V. Andreev, J. Opt. Technol. 69, 501 (2002).Google Scholar
  322. 322.
    O. V. Andreeva, V. G. Bespalov, V. N. Vasil’ev, E. R. Gav-rilyuk, N. V. Ionina, S. A. Kozlov, V. V. Orlov, and A. A. Paramonov [in Russian]. Optoinformatics, Part II, Information Capabilities of Volume Holograms: A Methodological Tutorial (SPbGIT MO (TU), St. Petersburg, 2003).Google Scholar
  323. 323.
    L. S. Gaida, D. V. Guzatov, A. Svistun, and A. L. Tolstik, in Modern Laboratory Tutorial on Holography Using New-Generation Laser Technology (GrGU, Grodno, 2011), p. 35.Google Scholar
  324. 324.
    A. V. Veniaminov and E. Bartsch, Opt. Spectrosc. 110, 464 (2011).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Belarusian State UniversityMinskBelarus

Personalised recommendations