Optics and Spectroscopy

, Volume 115, Issue 6, pp 828–838 | Cite as

Multiphoton absorption controlled by the resonance optical stark effect in crystals

  • M. A. Bondarev
  • E. Yu. Perlin
  • A. V. Ivanov
Condensed-Matter Spectroscopy


Probabilities of n-photon transitions between upper valence and lower conduction bands under conditions in which the frequency of light is in resonance with the frequency of adjacent transition between two conduction bands are calculated for arbitrary integer n. The case of n = 3 is investigated in detail. Effects caused by transformation of the electronic band spectrum due to the resonance optical Stark effect are analyzed. It is shown that the rate of photogeneration of electron-hole pairs as a function of radiation intensity j is nonmonotonic and includes areas of extremely fast rise and/or decrease due to the appearance of new van Hove singularities in the modified band spectrum.


Optical Breakdown Photon Transition Photon Generation MULTIPHOTON Absorption Lower Conduction Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. H. Spielmann, G. Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, Appl. Phys. A 79, 1695 (2004).ADSGoogle Scholar
  3. 3.
    A. Vogel, J. Noack, G. Huttman, and G. Paltauf, Appl. Phys. 81, 1015 (2005).CrossRefGoogle Scholar
  4. 4.
    I. N. Zavestovskaya, P. G. Eliseev, O. N. Krokhin, and N. A. Men’kova, Appl. Phys. A 92, 903 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Galitskii and V. F. Elesin, Resonance Interaction of Electromagnetic Waves with Semiconductors (Energoatomizdat, Moscow, 1986) [in Russian].Google Scholar
  6. 6.
    E. Yu. Perlin and V. A. Kovarskii, Fiz. Tverd. Tela 12, 3105 (1970).Google Scholar
  7. 7.
    B. S. Sharma and K. E. Riekhof, Can. J. Phys. 45, 3781 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    B. S. Sharma and K. E. Riekhof, Can. J. Phys. 48, 11781 (1970).Google Scholar
  9. 9.
    V. A. Kovarskii and E. Yu. Perlin, Phys. Status Solidi B 45, 47 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    A. Schmid, P. Kelly, and P. Braunlich, Phys. Rev. B 16(10), 4569 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    S. C. Jones, X. A. Shen, and R. F. Braunlich, Phys. Rev. B 35, 894 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    X. A. Shen, S. C. Jones, and P. F. Braunlich, Phys. Rev. B 36, 28310 (1987).Google Scholar
  13. 13.
    S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, Opt. Eng. 28(10), 1039 (1989).ADSGoogle Scholar
  14. 14.
    V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, Zh. Eksp. Teor. Fiz. 57, 207 (1969).Google Scholar
  15. 15.
    Y. Yacoby, Phys. Rev. B 1, 1966 (1970).ADSGoogle Scholar
  16. 16.
    Yu. I. Balkarei and E. M. Epshtein, Fiz. Tverd. Tela 17, 2312 (1975).Google Scholar
  17. 17.
    N. Tzoar and J. I. Gersten, Phys. Rev. B 12, 1132 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    E. Yu. Perlin, Zh. Eksp. Teor. Fiz. 105, 186 (1994).Google Scholar
  19. 19.
    E. Yu. Perlin and A. V. Fedorov, Opt. Spektrosk. 78(3), 445 (1995).Google Scholar
  20. 20.
    E. Yu. Perlin and A. V. Fedorov, Fiz. Tverd. Tela 37, 1463 (1995).Google Scholar
  21. 21.
    E. Yu. Perlin and A. V. Fedorov, Izv. Akad. Nauk 60, 164 (1996).Google Scholar
  22. 22.
    V. E. Gruzdev, Phys. Rev. B 75, 205106 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    E. Yu. Perlin and D. I. Stasel’ko, Opt. Spektrosk. 88(1), 57 (2000).ADSGoogle Scholar
  24. 24.
    E. Yu. Perlin and D. I. Stasel’ko, Opt. Spektrosk. 98(6), 944 (2005).Google Scholar
  25. 25.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spektrosk. 106(5), 756 (2009).Google Scholar
  26. 26.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spektrosk. 106(5), 764 (2009).Google Scholar
  27. 27.
    M. A. Bondarev, A. V. Ivanov, and E. Yu. Perlin, Opt. Spektrosk. 112(1), 115 (2012).ADSGoogle Scholar
  28. 28.
    A. M. Basharov, Photonics: Unitary Transformation Method in Nonlinear Optics (MIFI, Moscow, 1990) [in Russian].Google Scholar
  29. 29.
    S. D. Ganichev, S. A. Emel’yanov, E. L. Ivchenko, E. Yu. Perlin, Ya. V. Terent’ev, A. V. Fedorov, and I. D. Yaroshetskii, Zh. Eksp. Teor. Fiz. 91, 1233 (1986).Google Scholar
  30. 30.
    L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964).Google Scholar
  31. 31.
    I. V. Kityk, V. Yu. Fenchak, and A. A. Grabar, Fiz. Tverd. Tela 37, 1883 (1995).Google Scholar
  32. 32.
    T. V. Gorkavenko, S. M. Zubkova, and V. A. Makara, Fiz. Tekh. Poluprovodn. (St. Petersburg) 41, 908 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. A. Bondarev
    • 1
  • E. Yu. Perlin
    • 1
  • A. V. Ivanov
    • 1
  1. 1.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations