Advertisement

Optics and Spectroscopy

, Volume 115, Issue 3, pp 363–367 | Cite as

High-temperature Bose-Einstein condensation of photonlike atom-light polaritons

  • I. Yu. Chestnov
  • A. P. AlodjantsEmail author
  • S. M. Arakelian
Basic Problems of Optics 2012
  • 54 Downloads

Abstract

We propose a method for obtaining a Bose-Einstein condensate of an ideal one-dimensional gas of atom-light polaritons of the lower branch in a trap at high temperatures (on the order of room temperature or higher). The system under consideration is an atomic ensemble that interacts with a single-mode quantum electromagnetic field in the presence of optical collisions with a high-pressure buffer gas. The possibility of using biconical waveguides for revealing the predicted phenomenon is discussed. The dynamics of the polariton condensate in the trap is investigated on the basis of the variational approach.

Keywords

Airy Function Atomic Ensemble Optical Interaction Confinement Potential Polariton Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003).zbMATHGoogle Scholar
  2. 2.
    K. Hammerer, A. S. Sorensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    J.-L. LeGouet and P. R. Berman, Phys. Rev. A 74, 023814 (2006).CrossRefGoogle Scholar
  5. 5.
    R. E. M. Hedges and D. L. Drummond, Phys. Rev. A 22, 1625 (1980).CrossRefGoogle Scholar
  6. 6.
    I. Yu. Chestnov, A. P. Alodjants, S. M. Arakelian, J. Nipper, U. Vogl, F. Vewinger, and M. Weitz, Phys. Rev. A 81, 053843 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    A. P. Alodjants, I. Yu. Chestnov, and S. M. Arakelian, Phys. Rev. A 83, 053802 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    Y. F. Mei, G. Huang, A. A. Solovev, E. B. Urena, I. Monch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, Adv. Mater. 20, 4085 (2008).CrossRefGoogle Scholar
  9. 9.
    U. Vogl, Phys. Rev. A 83, 053403 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    I. Yu. Chestnov, A. P. Alodjants, S. M. Arakelian, et al., Phys. Rev. A 85, 053648 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun, 2nd ed. (Dover, New York, 1971; Nauka, Moscow, 1979).Google Scholar
  12. 12.
    O. Vallee and M. Soares, Airy Functions and Applications to Physics (Imperial College Press, London, 2004).CrossRefzbMATHGoogle Scholar
  13. 13.
    N. V. Karlov and N. A. Kirichenko, Introductory Chapters into Quantum Mechanics (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  14. 14.
    V. Bagnato and D. Kleppner, Phys. Rev. A 44, 7439 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    V. M. Perez-Garcia, H. Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev. Lett. 77, 532 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. Yu. Chestnov
    • 1
  • A. P. Alodjants
    • 1
    • 2
    Email author
  • S. M. Arakelian
    • 1
  1. 1.Vladimir State UniversityVladimirRussia
  2. 2.Russian Quantum CenterSkolkovo, Moscow oblastRussia

Personalised recommendations