Optics and Spectroscopy

, Volume 114, Issue 6, pp 946–960 | Cite as

Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

Condensed-Matter Spectroscopy


We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Derrick, D. Stulik, and J. M. Landry Infrared Spectroscopy in Conservation Science (The Getty Conservation Institute, Los Angeles, 1999).Google Scholar
  2. 2.
    E. Ciliberto and G. N. Y. Spoto, Modern Analytical Methods in Art and Archaeology, Ed. by E. Ciliberto and G. Spoto (Wiley, New York, 2000).Google Scholar
  3. 3.
    G. Matthaes, The Art Collector’s Illustrated Handbook (Milan, 1997).Google Scholar
  4. 4.
    P. Vandenabeele, H. G. M. Edwards, and L. Moens, Chem. Rev. 107(3), 677 (2007).CrossRefGoogle Scholar
  5. 5.
    H. G. M. Edwards and M. J. Falk, Appl. Spectrosc. 51, 1134 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    H. G. M. Edwards, Spectroscopy 17, 16 (2002).Google Scholar
  7. 7.
    H. G. M. Edwards, D. W. Farwell, D. L. A. de Faria, A. M. F. Monteiro, M. C. Afonso, P. de Blasis, and S. Eggers, J. Raman Spectrosc. 32, 17 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    M. Igisu, S. Nakashima, Y. Ueno, et al., Appl. Spectrosc. 60(10), 1111 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. Carden and M. D. Morris, J. Biomed. Optics 5, 259 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Dauphin, Appl. Spectrosc. 47(1), 52 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    L. G. Benning, V. R. Phoenix, N. Yee, K. O. Konhauser, and B. W. Mountain, Geochim. Earth Surf. 6, 259 (2002).Google Scholar
  12. 12.
    N. K. Vincent and G. R. Hunt, Appl. Opt. 7(1), 53 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    A. Brown, M. Walter, and T. Cudahy, Astrobiology 4(3), 359 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    M. M. Astaf’eva, L. M. Gerasimenko, A. R. Geptner, et al., Fossil Bacteria and other Microorganisms in Terrestrial Rocks and Astromaterials, Ed. by A. Yu. Rozanov and G. T. Ushatinskaya (PIN RAN, Moscow, 2011) [in Russian].Google Scholar
  15. 15.
    R. N. Clark, Manual of Remote Sensing, Vol. 3: Remote Sensing for the Earth Sciences, Ed. by A. N. Rencz (Wiley, New York, 1999).Google Scholar
  16. 16.
    P. R. Griffiths, Fourier Transform Infrared Spectrometry 2nd ed. (Wiley, Hoboken, 2007).CrossRefGoogle Scholar
  17. 17.
    W. W. Wendlant and H. G. Hecht, Reflectance Spectroscopy (Intersience, New York, 1966).Google Scholar
  18. 18.
    V. A. Kizel’, Reflection of Light (Nauka, Moscow, 1973).Google Scholar
  19. 19.
    G. Kortum, Reflectance Spectroscopy (Springer-Verlag, Berlin, 1969).CrossRefGoogle Scholar
  20. 20.
    P. Kubelka, Reflectance Spectroscopy (Theory, Methods, Procedures) (Mir, Moscow, 1978) [Russian translation].Google Scholar
  21. 21.
    R. Shahack-Gross and S. Weiner, J. Archaeol. Sci. 24, 439 (1997).CrossRefGoogle Scholar
  22. 22.
    G. Velraj, K. Prabakaran, A. M. Musthafa, and R. Hemamalini, Recent Res. Sci. Technol. 2(10), 94 (2010).Google Scholar
  23. 23.
    M. C. Stiner, S. L. Kuhn, S. Weiner, and O. Bar-Yosef, J. Archaeol. Sci. 22, 223 (1995).CrossRefGoogle Scholar
  24. 24.
    L. G. Benning, V. R. Phoenix, N. Yee, and K. O. Konhauser, Geochim. Cosmochim. Acta 68(4), 743 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    A. Banerjee, G. Bortolaso, and W. Dindorf, Elfenbein und Artenschutz Ivory and Species Conservation INCENTIVS-Tagungsbeitrage der Jahre (2004–2007) Proceedings of INCENTIVS-Meetings (2004–2007), 2008, p. 37.Google Scholar
  26. 26.
    L. V. Kiseleva, Ezhegodnik—2008, Trudy IGG UrO RAN, No. 156, 312 (2009).Google Scholar
  27. 27.
    A. Rein, F. Higgins, and Pik Tang Leung, Application Note. Publ., No. 5990-8739EN. Dunbyri, CT, USA: Agilent Technologies Inc., 26 July. 2011.Google Scholar
  28. 28.
    N. J. Harrick, Am. Lab. News Ed. 39(19), 22 (2007).Google Scholar
  29. 29.
    Solutions in Optical Spectroscopy (Harrick Scientific Products Inc., Pleasantville, 2011), p. 161.Google Scholar
  30. 30.
    R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging (Wiley, New York, 2009).CrossRefGoogle Scholar
  31. 31.
    M. Marcovic, B. O. Fowler, and M. S. Tung, J. Res. Natl. Inst. Stand. Technol. 109, 553 (2004).CrossRefGoogle Scholar
  32. 32.
    R. N. Clark, G. A. Swayze, R. Wise, et al., USGS Digital Spectral Library splib06a, U.S. Geological Survey, Data Series 231. 2007.Google Scholar
  33. 33.
    G. Duplain, R. Boulay, and P. A. Belanger, Appl. Opt. 26(20), 4447 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    V. M. Zolotarev, Opt. Spektrosk. 103, 609 (2007).CrossRefGoogle Scholar
  35. 35.
    W. J. Tropf, Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, San Diego, 1991), Vol. 3, p. 701.Google Scholar
  36. 36.
    N. N. Rozanov and V. M. Zolotarev, Opt. Spektrosk. 49, 925 (1980).Google Scholar
  37. 37.
    G. M. Mansurov, N. N. Rozanov, V. M. Zolotarev, and S. M. Sutovskii, Opt. Spektrosk. 53, 301 (1982).Google Scholar
  38. 38.
    G. A. Khlopachev, Tusk Industries of the Upper Paleolith of the Eastern Europe (Nauka, St. Petersburg, 2006) [in Russian].Google Scholar
  39. 39.
    Armament Supplies and Objects of Art Made of Bone in Ancient Cultures of the Nothern Eurasia (Technological and Functional Aspects), Ed. by G. A. Khlopachev (Nauka, St. Petersburg, 2011) [in Russian].Google Scholar
  40. 40.
    G. A. Khlopachev and Yu. N. Gribchenko, Kratk. Soobshch. Instituta Arkheologii RAN, No. 227, 134 (2012).Google Scholar
  41. 41.
    N. V. Vagenas, A. Gratouli, and C. G. Kontoyannis, Talanta 59, 831 (2003).CrossRefGoogle Scholar
  42. 42.
    B. Wopenka and J. D. Pasteris, Materials Sci. Engin. 25, 131 (2005).CrossRefGoogle Scholar
  43. 43.
    T. Z. Forbes, A. V. Radha, and A. Navrotsky, Geochm. Cosmochim. Acta 75, 7893 (2011).ADSCrossRefGoogle Scholar
  44. 44.
    F. A. Findersen and L. Brecevic, Acta Chem. Scandinavica 45, 1018 (1991).CrossRefGoogle Scholar
  45. 45.
    J. R. Petit, J. Jouzel, D. Raynaud, et al., Nature 399, 429 (1999).ADSCrossRefGoogle Scholar
  46. 46.
    D. Hadzi, Pure Appl. Chem. 11, 435 (1965).CrossRefGoogle Scholar
  47. 47.
    G. Turner-Walker, in Advances in Human Palaeopathology, Ed. by R. Pinhasi and S. Mays (Wiley, New York, 2008), pp. 1–29.Google Scholar
  48. 48.
    H. Mark and J. Workman, Spectroscopy 18(4), 32 (2003).Google Scholar
  49. 49.
    V. M. Zolotarev, Opt. Spektrosk. 112(1), 150 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    A. J. Owen, Application Note Publ., No. 5963-3940E, Agilent Technologies Inc., Waldbron, Germany, 1995.Google Scholar
  51. 51.
    G. T. Ushatinskaya, in Materials of the 4th International Mineralogical, Seminar: Mineralogy and Life. The Origin of Biosphere and Coevolution of Mineral and Biological Worlds, Biomineralogy (Institute of Geology of the Komi NTs UrO RAN, 2007), p. 68.Google Scholar
  52. 52.
    A. Yu. Rozanov, in Materials of the 4th International Mineralogical, Seminar: Mineralogy and Life. The Origin of Biosphere and Coevolution of Mineral and Biological Worlds, Biomineralogy (Institute of Geology of the Komi NTs UrO RAN, 2007), p. 61.Google Scholar
  53. 53.
    J. Labs-Hochstein, I. Quitmyer, and D. S. Jones, Palaeogeography, Palaeoclimatology, Palaeoecology 206, 179 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Peter the Great Museum of Anthropology and EthnographyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations