Optics and Spectroscopy

, Volume 114, Issue 3, pp 471–477 | Cite as

Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence

  • A. B. Utkin
  • S. Vieira
  • J. Marques da Silva
  • A. Lavrov
  • E. Leite
  • P. Cartaxana
Lasers and Their Applications

Abstract

The development of a compact low-cost detector for non-destructive assessment of microphytobenthos using laser induced fluorescence was described. The detector was built from a specially modified commercial miniature fiber optic spectrometer (Ocean Optics USB4000). Its usefulness is experimentally verified by the study of diatom-dominated biofilms inhabiting the upper layers of intertidal sediments of the Tagus Estuary, Portugal. It is demonstrated that, operating with a laser emitter producing 30 mJ pulses at the wavelength of 532 nm, the detector is capable to record fluorescence signals with sufficient intensity for the quantitative biomass characterization of the motile epipelic microphytobenthic communities and to monitor their migratory activity. This paves the way for building an entire emitter-detector LIF system for microphytobenthos monitoring, which will enable microalgae communities occupying hardly accessible intertidal flats to be monitored in vivo at affordable cost.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Brito, A. Newton, P. Tett, and T. F. Fernandes, Ecological Indicators 19, 226 (2012).CrossRefGoogle Scholar
  2. 2.
    J. M. Oakes, B. D. Eyre, J. J. Middelburg, and H. T. S. Boschkerb, Limnology and Oceanography 55, 2126 (2010); http://www.aslo.org/lo/toc/vol-55/issue-5/2126.pdf.CrossRefGoogle Scholar
  3. 3.
    G. J. Underwood and J. Kromkamp, Advances in Ecological Research 29, 93 (1999).CrossRefGoogle Scholar
  4. 4.
    H. L. MacIntyre, R. J. Geider, and D. C. Miller, Estuaries 19, 186 (1996).CrossRefGoogle Scholar
  5. 5.
    S. J. Lake and M. J. Brush, Estuarine, Coastal and Shelf Science 95, 289 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. O. Alabi, M. Tampier, and E. Bibeau, Microalgae Technologies and Processes for Biofuels/Bioenergy Production in British Columbia (Seed Science, Nanaimo, 2009).Google Scholar
  7. 7.
    M. Marani, A. D’Alpaos, S. Lanzoni, L. Carniello, and A. Rinaldo, J. Geophys. Research F: Earth Surface 115, F04004 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    K. D. Hoagland, J. R. Rosowski, M. R. Gretz, and S. C. Roemer, J. Phycology 29, 537 (1993).CrossRefGoogle Scholar
  9. 9.
    A. Hoffmann and G. Gunkel, Limnologica 41, 10 (2011).CrossRefGoogle Scholar
  10. 10.
    J. S. Won, Y. K. Lee, and J. Choi, in IEEE Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, New York, 2005), p. 437.Google Scholar
  11. 11.
    J. P. Combe, P. Launeau, V. Carrere, D. Despan, V. Meleder, L. Barille, and C. Sotin, Remote Sensing of Environment 98, 371 (2005).CrossRefGoogle Scholar
  12. 12.
    S. E. Hagerthey, E. J. Scot, J. W. Louda, and P. Mongkronsri, J. Phycology 42, 1125 (2006).CrossRefGoogle Scholar
  13. 13.
    P. Cartaxana, M. Ruivo, C. Hubas, I. Davidson, J. Serôdio, and B. Jesus, J. Experimental Marine Biology and Ecology 405, 120 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Serôdio, P. Cartaxana, H. Coelho, and S. Vieira, Remote Sensing of Environment 113, 1760 (2009).CrossRefGoogle Scholar
  15. 15.
    D. J. Suggett, O. Prášil, and M. A. Borowitzka, Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications (Springer, Dordrecht, 2010).CrossRefGoogle Scholar
  16. 16.
    C. J. Lorenzen, Deep Sea Research and Oceanographic Abstracts 13, 223 (1966).CrossRefGoogle Scholar
  17. 17.
    H. Kautsky and A. Hirsch, Naturwissenschaften 19, 964 (1931).ADSCrossRefGoogle Scholar
  18. 18.
    M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 315, 171 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 317, 57 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Ann. Phys. 17, 460 (2008).MATHCrossRefGoogle Scholar
  21. 21.
    M. Kitajima, and W. L. Butler, Biochimica et Biophysica Acta 376, 105 (1975).CrossRefGoogle Scholar
  22. 22.
    A. Lavrov, A. B. Utkin, J. Marques da Silva, R. Vilar, N. M. Santos, and B. Alves, Opt. Spectrosc. 112, 271 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    Handy PEA: Continuous Excitation Plant Efficiency Analyser (Hansatech Instruments, Norfolk, 2012); http://www.hansatech-instruments.com/forum/uploads/infosheets/download/Handy%20PEA.pdf.Google Scholar
  24. 24.
    J. Serôdio, J. Marques da Silva, and F. Catarino, J. Phycology 33, 542 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Vieira, L. Ribeiro, B. Jesus, P. Cartaxana, and J. Marques da Silva, Photochemistry and Photobiology, in press (DOI: 10.1111/j.1751-1097.2012.01224.x).Google Scholar
  26. 26.
    N. L. Fateyeva, A. V. Klimkin, O. V. Bender, A. P. Zotikova, and M. S. Yamburov, Atmospheric and Oceanic Optics 19, 189 (2006).Google Scholar
  27. 27.
    A. I. Grishin, G. M. Krekov, M. M. Krekova, G. G. Matvienko, A. Ya. Sukhanov, V. I. Timofeev, N. L. Fateyeva, and A. A. Lisenko, Atmospheric and Oceanic Optics 20, 294 (2007).Google Scholar
  28. 28.
    A. I. Grishin, G. M. Krekov, M. M. Krekova, G. G. Matvienko, A. Ya. Sukhanov, N. L. Fateyeva, A. A. Lisenko, and V. I. Timofeev, Intern. J. Remote Sensing 29, 2549 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    S. Vieira, A. B. Utkin, A. Lavrov, N. M. Santos, R. Vilar, J. Marques da Silva, and P. Cartaxana, Marine Ecology Progress Series 432, 45 (2011).CrossRefGoogle Scholar
  30. 30.
    Spectrelle 5000 Compact High Resolution Echelle Spectrograph (GWU-Lasertechnik, Erftstadt, 2000).Google Scholar
  31. 31.
    Toshiba CCD Linear Image Sensor TCD1304AP (Toshiba, Irvine, 2001).Google Scholar
  32. 32.
    Edmund Optics: Optical and Optical Instruments Catalog, Spring 2012 (Edmund Optics, Barrington, 2012) p. 448.Google Scholar
  33. 33.
    Innovative Solutions for Your Application Needs (B&W Tek, Newark, 2012), pp. 11–27.Google Scholar
  34. 34.
  35. 35.
    Phytoplankton Analyzer PHYTO-PAM and Phyto-Win Software V 1. 45 (Heinz Walz GmbH, Eichenring, 2003).Google Scholar
  36. 36.
    USB4000 Data Sheet (Ocean Optics, Dunedin, 2009).Google Scholar
  37. 37.
    USB Optical Bench Options (Ocean Optics, Dunedin, 2012), http://www.oceanoptics.com/products/benchoptions-usb4. asp.
  38. 38.
    External Triggering Options Instructions (Ocean Optics, Dunedin, 2012), http://www.oceanoptics.com/technical/External-Triggering. pdf.
  39. 39.
    OOIBase32, Spectrometer Operating Software: Installation and Operation Manual. Document Number 000-20000-020-02-0505 (Ocean Optics, Dunedin, 2005), http://chemgroups.ucdavis.edu/~osterloh/images/manuals/ooibase32. pdf.
  40. 40.
    J. Serôdio, H. Coelho, S. Vieira, and S. Cruz, Estuarine, Coastal and Shelf Science 68, 547 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    P. Cartaxana and J. Serôdio, Limnology and Oceanography Methods 6, 466 (2008).CrossRefGoogle Scholar
  42. 42.
    Pulsed Nd:YAG Laser NL303: Technical Description and User’s Manual (EKSPLA, Vilnius, 2000).Google Scholar
  43. 43.
    A. B. Utkin, A. M. Fernandes, A. V. Lavrov, and R. M. Vilar, Intern. J. Wildland Fire 13, 401 (2004).CrossRefGoogle Scholar
  44. 44.
    A. B. Utkin, A. Lavrov, and R. M. Vilar, Proc. SPIE 7994, 799415 (2011).CrossRefGoogle Scholar
  45. 45.
    LS2131M Compact Pulsed Nd:YAG Laser (LOTIS TII, Minsk, 2012).Google Scholar
  46. 46.
    Brio Pulsed Nd:YAG Lasers (Quantel, Les Ulis, 2012).Google Scholar
  47. 47.
    Air Cooled Nd:YAG Laser LQ115 (Solar Laser Systems, Minsk, 2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. B. Utkin
    • 1
    • 2
  • S. Vieira
    • 3
    • 4
    • 5
  • J. Marques da Silva
    • 4
    • 5
  • A. Lavrov
    • 1
    • 2
  • E. Leite
    • 1
    • 2
  • P. Cartaxana
    • 3
  1. 1.INOV-INESC InovaçãoLisbonPortugal
  2. 2.ICEMS, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal
  3. 3.Centro de OceanografiaFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  4. 4.BioFIGFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  5. 5.Departamento de Biologia VegetalFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations