Optics and Spectroscopy

, Volume 114, Issue 3, pp 379–383 | Cite as

Broadband copper luminescence in potassium-aluminum borate glasses

  • N. V. Nikonorov
  • A. I. Sidorov
  • V. A. Tsekhomskii
  • T. A. Shakhverdov
Condensed-Matter Spectroscopy


Broadband luminescence in the visible spectral range has been investigated for copper-containing potassium-aluminum borate glasses. It is shown that the luminescence in initial glasses (before their heat treatment) is due to the presence of molecular clusters Cun (n < 10) in them. Chemical reactions during heat treatment lead to the formation of CunClx and CunOx clusters with luminescence bands lying in the spectral range of 450–600 nm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Dotsenko, L. B. Glebov, and V. A. Tsekomskii, Physics and Chemistry of Photochromic Glasses (CRC Press, New York, 1998).Google Scholar
  2. 2.
    Y. Kondo, Y. Kuroiwa, N. Sugimoto, T. Manabe, S. Ito, T. Yoko, and A. Nakamura, J. Opt. Soc. Am. B 17, 548 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    T. Kataoka, T. Tokizaki, and A. Nakamura, Phys. Rev. B 48, 2815 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Said, T. Xia, D. J. Hagan, E. W. van Stryland, and M. Sheik-Bahae, J. Opt. Soc. Am. B 14, 824 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Opt. Zh. 75(12), 61 (2008).Google Scholar
  6. 6.
    A. A. Kim, N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and P. S. Shirshnev, Pis’ma Zh. Tekh. Fiz. 37, 22 (2011).Google Scholar
  7. 7.
    K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, Nature 431, 167 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    M. Oda, M. Y. Shen, M. Saito, and T. Goto, J. Lumin. 87–89, 469 (2000).CrossRefGoogle Scholar
  9. 9.
    S. Park, G. Jeen, H. Kim, and I. Kim, J. Korean Phys. Soc. 37(3), 309 (2000).Google Scholar
  10. 10.
    A. N. Gruzintsev and V. N. Zagorodnev, Phys. Solid State 54, 117 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Masumoto and S. Ogasawara, J. Lumin. 87–89, 360 (2000).CrossRefGoogle Scholar
  12. 12.
    I. Kh. Akopyan, V. V. Golubkov, O. A. Dyatlova, A. N. Mamaev, B. V. Novikov, and A. N. Tsagan-Mandzhiev, Phys. Solid State 52, 805 (2010).CrossRefGoogle Scholar
  13. 13.
    L. O’Reilly, O. F. Lucas, P. J. McNally, A. Readerb, G. Natarajan, S. Daniels, D. C. Cameronc, A. Mitra, M. Martinez-Rosas, and A. L. Bradley, J. Appl. Phys. 98, 113512 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    F. Chiarella, R. Mosca, M. Pavesi, A. Zapettini, P. Ferro, and F. Licci, Appl. Phys. A 88, 235 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    A. L. Ashkalunin and P. M. Valov, Zh. Tekh. Fiz. 55, 1671 (1985).Google Scholar
  16. 16.
    Y. Xu, S. Yang, G. Zhang, Y. Sun, D. Gao, and Yu. Sun, Mater. Lett. 65, 1699 (2011).CrossRefGoogle Scholar
  17. 17.
    V. S. Gurin, A. A. Alexeenko, and A. V. Kaparikha, Mater. Lett. 65, 2442 (2011).CrossRefGoogle Scholar
  18. 18.
    T. Srikumar, I. V. Kityk, Ch. Srinivasa Rao, Y. Gandhi, M. Piasecki, P. Bragiel, V. Ravi Kumar, and N. Veeraiah, Ceramics Intern. 37, 2763 (2011).CrossRefGoogle Scholar
  19. 19.
    Y. Teng, J. Zhou, G. Lin, J. Hua, H. Zeng, S. Zhou, and J. Qiu, J. Non-Cryst. Solids 358, 1185 (2012).CrossRefGoogle Scholar
  20. 20.
    C. Vazquez-Vazquez, M. Banobre-Lopez, A. Mitra, M. A. Lopez-Quintela, and J. Rivas, Langmuir 25, 8208 (2009).CrossRefGoogle Scholar
  21. 21.
    W. Wei, Y. Lu, W. Chen, and S. Chen, J. Am. Chem. Soc. 133, 2060 (2011).CrossRefGoogle Scholar
  22. 22.
    N. Vilar-Vidal, M. C. Blanco, M. A. Lopez-Quintela, J. Rivas, and C. Serra, J. Phys. Chem. C 114, 15924 (2010).CrossRefGoogle Scholar
  23. 23.
    Y. Z. Lu, W. T. Wei, and W. Chen, Chin. Sci. Bull. 57(1), 41 (2012).CrossRefGoogle Scholar
  24. 24.
    H. Elgavi, C. Krekeler, R. Berger, and D. Avnir, J. Phys. Chem. C 116, 330 (2012).CrossRefGoogle Scholar
  25. 25.
    H. Kawasaki, Y. Kosaka, Y. Myoujin, T. Narushima, T. Yonezawab, and R. Arakawa, Chem. Commun. 47, 7740 (2011).CrossRefGoogle Scholar
  26. 26.
    V. N. Golubkov, A. A. Kim, N. V. Nikonorov, V. A. Tsekhomskii, and P. S. Shirshnev, Fiz. Khim. Stekla 38, 303 (2012).Google Scholar
  27. 27.
    J. Zhou, Z.-H. Li, W.-N. Wang, and K.-N. Fan, Chem. Phys. Lett. 421, 448 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, J. Chem. Phys. 122, 144701 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    A. Poater, M. Duran, P. Jaque, A. Toro-Labbe, and M. Sola, J. Phys. Chem. B 110, 6526 (2006).CrossRefGoogle Scholar
  30. 30.
    A. Tervonen, B. R. West, and S. Honkanen, Opt. Engin. 50, 071107 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. V. Nikonorov
    • 1
  • A. I. Sidorov
    • 1
  • V. A. Tsekhomskii
    • 1
  • T. A. Shakhverdov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations