Optics and Spectroscopy

, Volume 114, Issue 4, pp 509–521 | Cite as

Raman spectra of alkyl-substituted azaoxa[8]circulenes: DFT calculation and experiment

  • V. A. Minaeva
  • B. F. Minaev
  • G. V. Baryshnikov
  • M. Pittelkow
Spectroscopy of Atoms and Molecules


Raman lines in spectra of recently synthesized azaoxa[8]circulenes have been assigned in detail on the basis of obtained experimental data and B3LYP/6-31G(d) calculations. Particular features of the structure of three azaoxa[8]circulenes have been considered based on data of X-ray structural analysis and DFT calculations. Regularities in changes of the geometric parameters have been found for benzene, furan, pyrrole, and naphthalene rings that occur upon formation of the macroring in comparison with free molecules. Raman spectra of macrorings have been shown to contain a characteristic set of lines the frequencies of which differ from those of analogous lines in Raman spectra of benzene, pyrrole, furan, and naphthalene. Results of quantum-chemical calculations agree well with experimental data with respect to line frequencies and intensities due to recalculation of Raman activities of normal vibrations into intensities of Raman lines.


Raman Spectrum Pyrrole Furan Benz Raman Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. B. Nielsen, T. Brock-Nannestad, P. Hammershoj, T. K. Reenberg, M. Schau-Magnussen, D. Trpcevski, T. Hensel, R. Salcedo, G. V. Baryshnikov, B. F. Minaev, and M. Pittelkow, Chem. Eur. J., DOI: 10.1002/chem.201203113 (2013).Google Scholar
  2. 2.
    H. Erdtman and H. E. Hogberg, Chem. Commun., No. 14, 773 (1968).Google Scholar
  3. 3.
    C. B. Nielsen, T. Brock-Nannestad, T. K. Reenberg, P. Hammershøj, J. B. Christensen, J. W. Stouwdam, and M. Pittelkow, Chem. Eur. J. 16(44), 13030 (2010).CrossRefGoogle Scholar
  4. 4.
    J. Eskildsen, T. Reenberg, and J. B. Christensen, Eur. J. Org. Chem, No. 8, 1637 (2000).Google Scholar
  5. 5.
    T. Brock-Nannestad, C. B. Nielsen, M. Schau-Magnussen, P. Hammershoj, T. K. Reenberg, A. B. Petersen, D. Trpcevski, and M. Pittelkow, Eur. J. Org. Chem., No. 31, 6320 (2011).Google Scholar
  6. 6.
    B. F. Minaev, G. V. Baryshnikov, and V. A. Minaeva, Comp. Theor. Chem. 972(1–3), 68 (2011).CrossRefGoogle Scholar
  7. 7.
    V. A. Minaeva, B. F. Minaev, G. V. Baryshnikov, H. Agren, and M. Pittelkow, Vib. Spectrosc. 61, 156 (2012).CrossRefGoogle Scholar
  8. 8.
    G. V. Baryshnikov, B. F. Minaev, V. A. Minaeva, A. T. Baryshnikova, and M. Pittelkow, J. Mol. Struct. 1026, 127 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    V. A. Minaeva, B. F. Minaev, G. V. Baryshnikov, O. M. Romeiko, and M. Pittelkow, Visn. Cherk. Univ., Ser. Khim. Nauki 227(14), 39 (2012).Google Scholar
  10. 10.
    V. A. Minaeva, B. F. Minaev, G. V. Baryshnikov, O. N. Romeiko, and M. Pittel’kov, Zh. Prikl. Spektrosk. 79(5), 709 (2012).Google Scholar
  11. 11.
    A. Dadvand, F. Cicoira, K. Yu. Chernichenko, E. S. Balenkova, R. M. Osuna, F. Rosei, V. G. Nenajdenko, and D. F. Perepichka, Chem. Commun., No. 42, 5354 (2008).Google Scholar
  12. 12.
    A. D. Becke, J. Chem. Phys. 98(7), 5648 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. 37(2), 785 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomeri, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J.B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C. 02 (Gaussian, Inc., Wallingford, 2004).Google Scholar
  15. 15.
    A. P. Scott, J. Phys. Chem. 100(41), 16502 (1996).CrossRefGoogle Scholar
  16. 16.
    P. L. Polavarapu, J. Phys. Chem. 94(21), 8106 (1990).CrossRefGoogle Scholar
  17. 17.
    S. I. Gorelsky, University of Ottawa, Canada, 2010.
  18. 18.
    B. F. Baryshnikov, M. Minaev, C. B. Pittelkow, and R. Nielsen, J. Mol. Model. 19(2), 847 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Radenkovic, I. Gutman, and P. Bultinck, J. Phys. Chem. A 116(37), 9421 (2012).CrossRefGoogle Scholar
  20. 20.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies-Tables and Charts, 3rd ed. (Wiley, Chichester, 2001).Google Scholar
  21. 21.
    L. Goodman, J. Phys. Chem. 95(23), 9044 (1991).CrossRefGoogle Scholar
  22. 22.
    E. Giedel and F. Billes, J. Mol. Struct. THEOCHEM. 507(1–3), 75 (2000).CrossRefGoogle Scholar
  23. 23.
  24. 24.
    A. Mohammed, B. Minaev, H. Agren, M. Lindgren, and P. Norman, Chem. Phys. Lett. 481(4–6), 209 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Minaeva
    • 1
  • B. F. Minaev
    • 1
  • G. V. Baryshnikov
    • 1
  • M. Pittelkow
    • 2
  1. 1.Bohdan Khmelnytsky National UniversityCherkasyUkraine
  2. 2.Copenhagen UniversityCopenhagenDenmark

Personalised recommendations