Optics and Spectroscopy

, Volume 114, Issue 5, pp 769–774 | Cite as

Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photo-thermo-refractive glasses

  • A. I. Ignat’ev
  • N. V. Nikonorov
  • A. I. Sidorov
  • T. A. Shakhverdov
Condensed-Matter Spectroscopy

Abstract

The luminescence spectra of photo-thermo-refractive (PTR) glasses containing cerium, silver, and antimony ions before and after UV irradiation and after heat treatment have been thoroughly investigated for the first time. It is shown that silver is present in the initial PTR glass in the form of ions and positively charged molecular clusters. After UV irradiation into the absorption band of cerium ions, silver partially passes to the neutral state in the form of atoms and neutral molecular clusters Ag2, Ag3, and Ag4, which exhibit bright luminescence in the visible spectral range. Subsequent heat treatment at a temperature below the glassformation temperature leads to an increase in the luminescence intensity due to the increase in the concentration of neutral molecular clusters. Heat treatment at a temperature above the glass-formation temperature leads to the formation of silver nanocrystals and luminescence quenching. It is proposed to use PTR glasses with molecular silver clusters as phosphors for converting UV radiation into the visible range for solar power engineering and white LEDs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Shanga, S. Dong, and G. U. Nienhausa, Nano Today. 6, 401 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Z. Lu, W. T. Wei, and W. Chen, Chin. Sci. Bull. 57, 41 (2012).CrossRefGoogle Scholar
  3. 3.
    G. A. Ozin and F. Hugues, J. Phys. Chem. 87, 94 (1983).CrossRefGoogle Scholar
  4. 4.
    G. A. Ozin, F. Hugues, S. M. Mattar, and D. F. McIntosh, J. Phys. Chem. 87, 3445 (1983).CrossRefGoogle Scholar
  5. 5.
    G. A. Ozin and H. Huber, Inorg. Chem. 17(1), 155 (1978).CrossRefGoogle Scholar
  6. 6.
    S. Fedrigo, W. Harbich, and J. Buttet, J. Chem. Phys. 99, 5712 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, Chem. Phys. Lett. 313, 105 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    J. Tiggesbaumker, L. Koller, K.-H. Meiwes-Broer, and A. Liebsch, Phys. Rev. A 48, 1749 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    W. Zheng and T. Kurobori, J. Lumin. 131, 36 (2011).CrossRefGoogle Scholar
  10. 10.
    Z. K. Wu, E. Lanni, W. Q. Chen, M. E. Bier, D. Ly, and R. Jin, J. Am. Chem. Soc. 131, 16672 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Banerjee, T. K. Ghanty, A. Chakrabarti, and C. Kamal, J. Phys. Chem. C 116, 193 (2012).CrossRefGoogle Scholar
  12. 12.
    T. U. B. Rao and T. Pradeep, Angew. Chem. Int. Ed. 49, 3925 (2010).CrossRefGoogle Scholar
  13. 13.
    H. Xu and K. S. Suslick, ACS Nano 4, 3209 (2010).CrossRefGoogle Scholar
  14. 14.
    S. L. Smith, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran, Spectrochim. Acta A 71, 186 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    M. Eichelbaum, K. Rademann, A. Hoell, D. M. Tat- chev, W. Weigel, R. Stoßer, and G. Pacchioni, Nanotechnology 19, 135701 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. Eichelbaum and K. Rademann, Adv. Funct. Mater. 19, 1 (2009).CrossRefGoogle Scholar
  17. 17.
    T. Hayakawa, S. T. Selvan, and M. Nogami, Appl. Phys. Lett. 74, 1513 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, J. Chem. Phys. 136, 174108 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N.T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, Opt. Express 20, 13582 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, Silver Nanoparticles, Ed. by D. P. Perez (In-Tech, Vukovar, Croatia, 2010), p. 177.Google Scholar
  21. 21.
    A. V. Vostokov, I. A. Verzin, A. I. Ignat’ev, O. A. Podsvirov, and A. I. Sidorov, Opt. Spectrosc. 109(3), 366 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    A. Tervonen, B. R. West, and S. Honkanen, Opt. Engin. 50, 071107 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    L. Glebova, D. Ehrt, and L. Glebov, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48, 328 (2007).Google Scholar
  24. 24.
    A. I. Ignat’ev, A. V. Nashchekin, V. M. Nevedomskii, O. A. Podsvirov, A. I. Sidorov, A. P. Solov’ev, and O. A. Usov, Zh. Tekh. Fiz. 81, 75 (2011).Google Scholar
  25. 25.
    J. Zhou, Z.-H. Li, W.-N. Wang, and K.-N. Fan, Chem. Phys. Lett. 421, 448 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, J. Chem. Phys. 136, 174108 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, J. Chem. Phys. 122, 144701 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and K. E. Lazareva, Opt. Spektrosk. 107(5), 745 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. I. Ignat’ev
    • 1
  • N. V. Nikonorov
    • 1
  • A. I. Sidorov
    • 1
  • T. A. Shakhverdov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations