Optics and Spectroscopy

, Volume 114, Issue 3, pp 406–413 | Cite as

Cross luminescence of BaF2 crystal: Ab initio calculation

  • A. S. Myasnikova
  • A. S. Mysovsky
  • E. A. Radzhabov
Condensed-Matter Spectroscopy


Using ab initio methods and taking into account the lattice relaxation and polarization caused by the occurrence of the core hole, we have studied theoretically the cross luminescence in barium fluoride crystals in terms of the embedded-cluster approach. Two schemes of modeling of the core hole have been performed—in the form of an additional point charge and in the form of the 5p state of the barium ion. Calculations have been done both by the Hartree-Fock method and by the density functional method. We have showed that the deformation of the lattice caused by the occurrence of the core hole leads to states localized on fluorine ions of the nearest environment splitting off from the valence band of the BaF2 crystal. The cross-luminescence bands at 5.7, 6.3, and 7.1 eV are caused by transitions from these localized states. We have also showed that the low-energy edge of the cross luminescence is formed by transitions from states that are localized on ions of the second coordination sphere.


Lattice Relaxation CsBr Main Maximum Core Hole Core Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Weber, J. Lumin. 100, 35 (1992).CrossRefGoogle Scholar
  2. 2.
    S. Kubota and J. Ruan, Nucl. Instrum. Meth. A 289, 253 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    P. A. Rodnyi, Radiat. Meas, No. 38, 343 (2004).Google Scholar
  4. 4.
    A. V. Golovin, N. G. Zakharov, and P. A. Rodnyi, Opt. Spektrosk. 65, 176 (1988).Google Scholar
  5. 5.
    V. M. Makhov, M. A. Terekhin, M. Kirm, S. L. Mo- lodtsov, and D. V. Vyalikh, Nucl. Instrum. Meth. A 537, 113 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    M. Kirm, S. Vielhauer, G. Zimmerer, A. Lushchik, and Ch. Lushchik, Surf. Rev. Lett. 9, 1963 (2002).CrossRefGoogle Scholar
  7. 7.
    E. Radzhabov, A. Nepomnyashikh, and A. Egranov, J. Phys.: Cond. Mat. 14, 1 (2002).CrossRefGoogle Scholar
  8. 8.
    A. I. Nepomnyashchikh, E. A. Radzhabov, A. V. Egra- nov, V. F. Ivashechkin, and A. S. Istomin, Nucl. Instrum. Meth. A 486, 390 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    V. N. Makhov, I. Kuusmann, J. Becker, M. Runne, and G. Zimmerer, J. Electron Spectrosc. Relat. Phenom. 101–103, 817 (1999).CrossRefGoogle Scholar
  10. 10.
    M. Itoh, K. Sawada, H. Hara, N. Ohno, and M. Kamada, J. Lumin. 72–74, 762 (1997).CrossRefGoogle Scholar
  11. 11.
    M. Itoh, M. Kamada, and N. Ohno, J. Phys. Soc. Jpn. 66, 2502 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    T. Sekikawa, T. Ohno, Y. Nabekawa, and Sh. Watanabe, J. Lumin. 87–89, 827 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Kirm, A. Lushchik, Ch. Lushchik, A. I. Nepomnyashchikh, and F. Savikhin, Rad. Measur, No. 33, 515 (2001).Google Scholar
  14. 14.
    Y. Nunuya and J. Ruan, Nucl. Instrum. Meth. A 337, 632 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Kayanuma and A. Kotani, J. Electron Spectrosc. Relat. Phenom. 79, 219 (1996).CrossRefGoogle Scholar
  16. 16.
    T. Matsumoto, K. Kan’no, M. Itoh, and N. Ohno, J. Phys. Soc. Jpn. 65(5), 1195 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    M. Itoh, N. Ohno, H. Yoshida, S. Hashimoto, K. Kan’no, and M. Kamada, J. Electron Spectrosc. Relat. Phenom. 79, 117 (1996).CrossRefGoogle Scholar
  18. 18.
    M. Itoh and M. Kamada, J. Phys. Soc. Jpn. 70(11), 3446 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    M. Itoh, N. Ohno, and S. Hashimoto, Phys. Rev. Lett. 69(7), 1133 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    M. Fukaya, Y. Kayanuma, and M. Itoh, J. Phys. Soc. Jpn. 71(10), 2557 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    L. K. Ermakov, P. A. Rodnyi, and N. V. Starostin, Fiz. Tverd. Tela 33(9), 2542 (1991).Google Scholar
  22. 22.
    J. Andriessen, P. Dorehbos, and C. W. E. van Fijk, Mol. Phys. 74(3), 535 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    A. S. Voloshinovskii, V. B. Mikhailik, P. A. Rodnyi, S. V. Syrotyuk, A. P. Shpak, and A. N. Yares’ko, Fiz. Tverd. Tela 36(6), 1666 (1994).Google Scholar
  24. 24.
    T. Ikeda, H. Kobayashi, Y. Ohmura, H. Nakamatsu, and T. Mukoyama, J. Phys. Soc. Jpn. 66(4), 1079 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    I. F. Bikmetov, A. B. Sobolev, and Ya. A. Valbis, Fiz. Tverd. Tela 33(10), 3039 (1991).Google Scholar
  26. 26.
    P. V. Sushko, A. L. Shluger, and C. R. A. Catlow, Surf. Sci. 450(3), 153 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian Inc., Pittsburgh PA (2007).Google Scholar
  28. 28.
    A. S. Myasnikova, E. A. Radzhabov, and A. S. Mysovsky, IEEE TN 57(2), 1193 (2010).Google Scholar
  29. 29.
    A. S. Mysovsky, E. A. Radzhabov, M. Reichling, A. L. Shluger, and P. V. Sushko, Phys. Status Solidi 2(1), 392 (2005).CrossRefGoogle Scholar
  30. 30.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 284 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    A. M. Stoneham, Handbook of Interatomic Potentials (AERE Harwell, 1981).Google Scholar
  32. 32.
    R. Dovesi, R. Orlando, C. Roetti, C. Pisani, and V. R. Saunders, Phys. Status Solidi 217, 63 (2000).CrossRefGoogle Scholar
  33. 33.
    A. Yu. Kuznetsov, A. B. Sobolev, A. N. Varaksin, J. Andriessen, and C. W. E. Eijk, Fiz. Tverd. Tela 45(5), 797 (2003).Google Scholar
  34. 34.
    A. Aguado, A. Ayuela, J. M. Lopez, and J. A. Alonso, J. Phys. Soc. Jpn. 68(8), 2829 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. S. Myasnikova
    • 1
  • A. S. Mysovsky
    • 1
  • E. A. Radzhabov
    • 1
  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations