Optics and Spectroscopy

, Volume 114, Issue 2, pp 236–239 | Cite as

Luminescence of molecular silver clusters in oxyfluoride glasses

  • E. V. Kolobkova
  • N. V. Nikonorov
  • A. I. Sidorov
  • T. A. Shakhverdov
Condensed-Matter Spectroscopy

Abstract

Luminescence spectra of silver-containing oxyfluoride glasses have been investigated in the excitation spectral range of 360–480 nm. Analysis of the luminescence spectra shows that silver in oxyfluoride glasses that contain no strong reducers and were subjected to heat treatment affecting redox processes exists in the form of neutral atoms and neutral molecular Ag2, Ag3, and Ag4 clusters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Eichelbaum and K. Rademann, Adv. Funct. Mater. 19, 1 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. Z. Lu, W. T. Wei, and W. Chen, Chin. Sci. Bull. 57, 41 (2012).CrossRefGoogle Scholar
  3. 3.
    L. Shanga, S. Dong, and G. U. Nienhausa, Nano Today 6, 401 (2011).CrossRefGoogle Scholar
  4. 4.
    H. Guo, X. F. Wang, J. D. Chen, and F. Li, Opt. Express 18, 18900 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    T. Hayakawa, S. T. Selvan, and M. Nogami, Appl. Phys. Lett. 74, 1513 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    G. A. Ozin and F. Hugues, J. Phys. Chem. 87, 94 (1983).CrossRefGoogle Scholar
  7. 7.
    G. A. Ozin, F. Hugues, S. M. Mattar, and D. F. McIntosh, J. Phys. Chem. 87, 3445 (1983).CrossRefGoogle Scholar
  8. 8.
    G. A. Ozin and H. Huber, Inorg. Chem. 17(1), 155 (1978).CrossRefGoogle Scholar
  9. 9.
    S. Fedrigo, W. Harbich, and J. Buttet, J. Chem. Phys. 99, 5712 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, Chem. Phys. Lett. 313, 105 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    J. Tiggesbaumker, L. Koller, K.-H. Meiwes-Broer, and A. Liebsch, Phys. Rev. A 48, 1749 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    W. Xheng and T. Kurobori, J. Lumin. 131, 36 (2011).CrossRefGoogle Scholar
  13. 13.
    Z. K. Wu, E. Lanni, W. Q. Chen, M. E. Bier, D. Ly, and R. Jin, J. Am. Chem. Soc. 131, 16672 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Xu and K. S. Suslick, ACS Nano 4, 3209 (2010).CrossRefGoogle Scholar
  15. 15.
    S. L. Smith, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran, Spectrochim. Acta A 71, 186 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. Eichelbaum, K. Rademann, A. Hoell, D. M. Tatchev, W. Weigel, R. Stoer, and G. Pacchioni, Nanotechnology 19, 135701 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    B. Karthikeyan, J. Appl. Phys. 103, 114313 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, Opt. Express 18, 22032 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. S. Kuznetsov, N. T. Cuong, V. K. Tikhomirov, M. Jivanescu, A. Stesmans, L. F. Chibotaru, J. J. Velazquez, V. D. Rodriguez, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, Opt. Mater. 34, 616 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    A. N. Trukhin, J. Non-Cryst. Solids 189, 1 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. V. Kolobkova
    • 1
  • N. V. Nikonorov
    • 1
  • A. I. Sidorov
    • 1
  • T. A. Shakhverdov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations