Optics and Spectroscopy

, Volume 114, Issue 1, pp 116–119 | Cite as

Visualization of type II fiber Bragg gratings induced in a birefringent fiber with an elliptical stress cladding

  • S. V. Varzhel’
  • V. V. Zakharov
  • G. N. Vinogradova
  • A. V. Veniaminov
  • V. E. Strigalev
Physical Optics

Abstract

Experimental results on visualization of type II fiber Bragg gratings induced in a birefringent fiber with an elliptical stress cladding are presented. The gratings are recorded by a single pulse of an excimer KrF-laser by means of the phase-mask method. Images of the gratings are obtained in a bright field using contrasting techniques such as differential interference contrast and dark field. It is shown that single-pulse recording forms several type II Bragg gratings in the optical fiber. The spatial profile of these gratings corresponds to the phase mask period. Microcracks due to which type II gratings are induced are localized both on the boundaries between the fiber core and claddings surrounding it and at some distance from them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18(15), 1277 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    P. C. Hill, G. R. Atkins, J. Canning, G. C. Cox, and M. G. Sceats, Appl. Opt. 34, 7689 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    N. M. Dragomir, G. Baxter, S. F. Collins, P. M. Farrell, A. J. Stevenson, D. D. Garchev, and A. Roberts, Trends in Optics and Photonics 70 (2002).Google Scholar
  5. 5.
    N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, Opt. Lett. 28 (10), 789 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    B. Kouskousis, N. M. Dragomir, C. M. Rollinson, S. A. Wade, D. J. Kitcher, S. F. Collins, A. Roberts, and G. W. Baxter, in ACOFT/AOS-Proc, 2006, pp. 81–83.Google Scholar
  7. 7.
    M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, Kvantovaya Elektron. 24(10), 944 (1997).Google Scholar
  8. 8.
    M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, Kvantovaya Elektron. 25(3), 277 (1998).Google Scholar
  9. 9.
    S. A. Vasil’ev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, Kvantovaya Elektron. 35(12), 1085 (2005).CrossRefGoogle Scholar
  10. 10.
    S. A. Kukushkin, A. V. Osipov, and M. G. Shlyagin, Zh. Tekh. Fiz. 76(8), 73 (2006).Google Scholar
  11. 11.
    M. A. Eron’yan, A. V. Komarov, Yu. N. Kondrat’ev, E. I. Romashova, M. M. Serkov, and A. V. Khokhlov, Opt. Zh. 67(10), 104 (2000).Google Scholar
  12. 12.
    S. V. Bureev, K. V. Dukel’skii, M. A. Eron’yan, P. A. Zlobin, A. V. Komarov, L. G. Levit, V. I. Strakhov, and A. V. Khokhlov, Opt. Zh. 74(4), 85 (2007).Google Scholar
  13. 13.
    S. V. Varzhel’, A. V. Kulikov, V. A. Aseev, V. S. Brunov, V. G. Kal’ko, and V. A. Arteev, Nauchno-Tekhn. Vestn. SPbGU ITMO 75(5), 27 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. V. Varzhel’
    • 1
  • V. V. Zakharov
    • 1
  • G. N. Vinogradova
    • 1
  • A. V. Veniaminov
    • 1
  • V. E. Strigalev
    • 1
  1. 1.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations