Optics and Spectroscopy

, Volume 114, Issue 1, pp 137–145 | Cite as

The influence of filtration caused by nonlinearity of holographic recording media on statistical characteristics of images

Holography

Abstract

The influence of filtration in the Fourier holography scheme, which is caused by nonlinearity of the exposure characteristics of recording media on the homogeneity of processed images in the first two statistical moments, has been investigated. Formulas approximating the dependences of the estimates on the generalized rate (ratio of image size to correlation length) are proposed. The influence of filtration on the change in the dependence of estimated homogeneity on the generalized rate is shown, and the influence of random phase spectrum on the variance of estimates is determined. It is shown that the two practical methods used to provide the desired generalized rate-change in the image size and filtration-differently affect the estimates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Evtikhiev and R. S. Starikov, Proc. Sci. Session of MEPhI 2011: Scientific-Technical Conference-Seminar On Photonics and Information Optics (Moscow, 2011), pp. 20–21.Google Scholar
  2. 2.
    R. Colier, C. Burckhardt, and L. Lin, Optical Holography (Academic, New York, 1971).Google Scholar
  3. 3.
    G. I. Vasilenko and L. M. Tsibul’kin, Holographic Recognition Devices (Radio i svyaz’, Moscow, 1985) [in Russian].Google Scholar
  4. 4.
    E. G. Paek and D. Psaltis, Opt. Eng. 26, 428 (1987).CrossRefGoogle Scholar
  5. 5.
    Y. Owechko, G. J. Dunning, E. Marom, and B. H. Soffer, Appl. Opt. 26, 1900 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Pavlov, Iskusstvennyi Intellekt i Prinyatie Reshenii, No. 1, 3 (2010).Google Scholar
  7. 7.
    A. V. Pavlov, Opt. Spectrosc. 98(6), 949 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    S. B. Gurevich et al., Data Transfer and Processing by Holographic Methods (Sov. Radio, Moscow, 1978) [in Russian].Google Scholar
  9. 9.
    A. D. Venttsel’, A Course in the Theory of Random Processes (Nauka, Moscow, 1975) [in Russian].Google Scholar
  10. 10.
    G. R. Grimmet and D. R. Sterzaker, Probability and Random Processes (Claredon, Oxford, 1992).Google Scholar
  11. 11.
    A. M. Kuleshov and E. I. Shubnikov, Opt. Spectrosc. 60(3), 369 (1986).ADSGoogle Scholar
  12. 12.
    A. M. Kuleshov, E. I. Shubnikov, and S. A. Smaeva, Opt. Spectrosc. 60(6), 791 (1986).ADSGoogle Scholar
  13. 13.
    S. A. Aleksandrina and A. M. Kuleshov, Opt. Spectrosc. 68(3), 381 (1990).ADSGoogle Scholar
  14. 14.
    A. M. Alekseev and A. V. Pavlov, Opt. Spektrosk. 107(6), 1038 (2009).Google Scholar
  15. 15.
    A. M. Yaglom, Correlation Theory of Stationary Random Functions (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  16. 16.
    G. A. Sergeev and D. Yanutsh, Statistical Methods for Studying Natural Objects (Gidrometeoizdat, Leningrad, 1973) [in Russian].Google Scholar
  17. 17.
    Yu. S. Tolchel’nikov, Optical Properties of Landscape (Nauka, Leningrad, 1974) [in Russian].Google Scholar
  18. 18.
    R. N. Strickland, Appl. Opt. 22(10), 1462 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    Z. S. Bekyasheva, A. A. Vostrikov, and A. V. Pavlov, Opt. Spectrosc. 109(1), 136 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    Z. S. Bekyasheva and A. V. Pavlov, Proc. Eighth Int. Conf. Goloekspo, 2011 (Minsk, 2011), p. 480.Google Scholar
  21. 21.
    A. M. Kuleshov and E. I. Shubnikov, Opt. Spectrosc. 55(1), 94 (1983).ADSGoogle Scholar
  22. 22.
    E. I. Shubnikov, Opt. Spectrosc. 62(2), 268 (1987).ADSGoogle Scholar
  23. 23.
    E. I. Shubnikov, Opt. Spectrosc. 62(3), 389 (1987).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations