Optics and Spectroscopy

, Volume 113, Issue 4, pp 376–382 | Cite as

Interband phototransitions involving free electrons: I. Crystals with a direct band gap

  • E. Yu. Perlin
  • A. V. Ivanov
  • A. A. Popov
Condensed-Matter Spectroscopy


Nonlinear absorption of laser radiation with a photon energy exceeding the half-width of the direct band gap of crystal but lower than its width has been considered. It is shown that, in the case of singlephoton resonance at transitions between two conduction bands, even at radiation intensities j ∼105–106 W/cm2, there is a range of j values where the optical absorption and concentration of nonequilibrium electron-hole pairs sharply increase with an increase in j. The transition of the material between states with different optical and electric properties occurs for few nanoseconds.


Free Carrier Auger Process Lower Conduction Band Intraband Relaxation Light Absorption Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Ryvkin, Sov. Phys. Solid State 7(4), 1035 (1965).Google Scholar
  2. 2.
    S. M. Ryvkin, A. A. Grinberg, and N. I. Kramer, Sov. Phys. Solid State 7(7), 1766 (1965).Google Scholar
  3. 3.
    N. I. Kramer, Sov. Phys. Solid State 7(12), 2874 (1965).Google Scholar
  4. 4.
    A. A. Grinberg, Proc. the 6th Winter School on the Theory of Nucleus and High-Energy Physics (FTI AN SSSR, Leningrad, 1971), Part 3, p. 29.Google Scholar
  5. 5.
    A. A. Rogachev and S. M. Ryvkin, Sov. Phys. Solid State 7(7), 1774 (1965).Google Scholar
  6. 6.
    A. A. Kastal’skii, S. M. Ryvkin, and E. S. Filatova, Fiz. Tekh. Poluprovodn. 4(12), 2993 (1970).Google Scholar
  7. 7.
    E. Yu. Perlin, A. V. Fedorov, and M. B. Kashevnik, Sov. Phys. JETP 58(4), 787 (1983).Google Scholar
  8. 8.
    A. M. Danishevskii, E. Yu. Perlin, and A. V. Fedorov, Sov. Phys. JETP 66(4), 747 (1987).Google Scholar
  9. 9.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spectrosc. 102(2), 227 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, JETP 101(2), 357 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Ivanov, R. S. Levitskii, and E. Yu. Perlin, Opt. Spectrosc. 107(2), 255 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    E. Yu. Perlin, A. V. Ivanov, and A. A. Popov, Opt. Spectrosc. 113(4), 383 (2012).CrossRefGoogle Scholar
  13. 13.
    E. C. G. Sudarshan, Phys. Rev. Lett. 10(7), 277 (1963).MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    R. J. Glauber, Phys. Rev. 131(6), 2766 (1963).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    R. J. Glauber, Quantum Theory of Optical Coherence. Selected Papers and Lecturs (Wiley, Weinheim, 2007).Google Scholar
  16. 16.
    R. J. Glauber, Optical Coherence and Statistics of Phonons, in Quantum Optics and Electronics, Ed. by C. de Witt, A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach, New York, 1965).Google Scholar
  17. 17.
    J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (W.A. Benjamin, New York, 1968).Google Scholar
  18. 18.
    D. Fritsch, H. Schmid, and M. Grundmann, Phys. Rev. B 67, 235 205 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Center of Information Optical TechnologiesSt. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations