Optics and Spectroscopy

, Volume 113, Issue 3, pp 259–264 | Cite as

Kinetics of thermalized luminescence of a single quantum dot at room temperature

  • M. Yu. Leonov
  • V. K. Turkov
  • I. D. Rukhlenko
  • A. V. Fedorov
Condensed-Matter Spectroscopy

Abstract

We have developed a theory of transient secondary emission of a single quantum dot from the lowest energy states of electron-hole pairs. We consider a process in which laser pulses excite a certain highenergy state of electron-hole pairs of a quantum dot at room temperature, with the electronic subsystem then relaxing to low-energy states and photons being emitted. Therefore, the investigated secondary emission process is thermalized luminescence. For definiteness, the developed model takes into account two states of electron-hole pairs that contribute to the luminescence. We have analyzed the dependence of the secondary emission signal on the energy gap between these states, the value of which is determined by the quantum dot size. In terms of the Pauli master kinetic equation, an analytical expression for the time dependent signal of the thermalized luminescence has been obtained. We show that, as the spectral width of the exciting laser pulse tends to zero, this expression yields the signal of stationary luminescence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011) [in Russian].Google Scholar
  2. 2.
    Device Applications of Silicon Nanocrystals and Nanostructures, Ed. by N. Koshida (Springer, New York, 2009).Google Scholar
  3. 3.
    U. Bockelman and G. Bastard, Phys. Rev. B 42, 8947 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    H. Benisty, C. M. Sotomayor-Torrés, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, Phys. Rev. Lett. 95, 196401 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074709 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    E. Hendry, M. Koeberg, F. Wang, H. Zhang, G. de Mello Donega, D. Vanmaekelbergh, and M. Bonn, Phys. Rev. Lett. 96, 057408 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    A. Pandey and P. Guyot-Sionnest, Science 322, 929 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    T. Inoshita, H. Sakaki, Physica B 227, 373 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    T. Inoshita, H. Sakaki, Phys. Rev. B 56, R4355 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    X.-Q. Li and Y. Arakawa, Phys. Rev. B 57, 12285 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    X.-Q. Li, H. Nakayama, and Y. Arakawa, Phys. Rev. B 59, 5069 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Solid State Commun. 122, 139 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spectrosc. 100(2), 238 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spectrosc. 101(2), 253 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, Phys. Rev. B 70, 035318 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, Solid State Commun. 128, 219 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, Phys. Rev. B 68, 205318 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Fedorov and A. V. Baranov, Opt. Spectrosc. 97(1), 56 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Fedorov and A. V. Baranov, Semiconductors (St. Petersburg) 38, 1065 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. V. Gaponenko, Phys. Rev. B 71, 195310 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    A. V. Fedorov and I. D. Rukhlenko, Opt. Spectrosc. 100(5), 716 (2006).CrossRefGoogle Scholar
  25. 25.
    P. C. Sercel, Phys. Rev. B 51, 14532 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    D. F. Schroeter, D. J. Griffiths, and P. C. Sercel, Phys. Rev. B 54, 1486 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    G. A. Narvaez, G. Bester, and A. Zunger, Phys. Rev. B 74, 075403 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 78, 125311 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 81, 245303 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, J. Chem. Phys. 133, 104704 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, Phys. Rev. B 74, 235328 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    T. Berstermann, T. Auer, H. Kurtze, M. Schwab, D. R. Yakovlev, M. Bayer, J. Wiersig, C. Gies, F. Jahnke, D. Reuter, and A. D. Wieck, Phys. Rev. B 76, 165318 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    H.-Y. Liu, Z.-M. Meng, Q.-F. Dai, L.-J. Wu, Q. Guo, W. Hu, S.-H. Liu, S. Lan, and T. Yang, J. Appl. Phys. 103, 083121 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, Phys. Rev. B 80, 235319 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 79, 161201 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spectrosc. 109(3), 358 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spectrosc. 110(1), 24 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spectrosc. 111(5), 798 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    A. V. Baranov, V. Davydov, A. V. Fedorov, H.-W. Ren, S. Sugou, and Y. Masumoto, Phys. Status Solidi B 224, 461 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Opt. Spectrosc. 93(1), 52 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Opt. Spectrosc. 93(4), 555 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Opt. Spectrosc. 92(5), 732 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, Phys. Rev. B 73, 235354 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    E. G. Kavousanaki, O. Roslyak, and S. Mukamel, Phys. Rev. B 79, 155324 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    X. M. Dou, B. Q. Sun, D. S. Jiang, H. Q. Ni, and Z. C. Niu, Phys. Rev. B 84, 033302 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    K. Rivoire, S. Buckley, Y. Song, M. L. Lee, and J. Vukovi, Phys. Rev. B 85, 045319 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1981; Mir, Moscow, 1983).MATHGoogle Scholar
  48. 48.
    A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, Appl. Phys. Lett. 90, 093104 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, Opt. Express 19, 15459 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. Yu. Leonov
    • 1
  • V. K. Turkov
    • 1
  • I. D. Rukhlenko
    • 2
  • A. V. Fedorov
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Advanced Computing and Simulation Laboratory, Department of Electrical and Computer Systems EngineeringMonash UniversityClaytonAustralia

Personalised recommendations