Optics and Spectroscopy

, Volume 112, Issue 6, pp 850–856 | Cite as

Nonlinear absorption of femtosecond light pulses under conditions of multiphoton resonances in solids

  • E. Yu. Perlin
  • K. A. Eliseev
  • E. G. Idrisov
  • Ya. T. Khalilov
Condensed-Matter Spectroscopy


A theory of nonlinear absorption of femtosecond light pulses by bulk crystals and nanostructures of differing dimensionality is developed. The pulse width is assumed to be small compared to the relaxation times of the electron and hole momenta. Expressions for the absorbed energy under conditions of multiphoton resonance are derived for transitions between discrete or band-related electron states and between sub-band states of size quantization in quantum wells and quantum wires. The dependence of the absorbed energy on the multiphoton resonance detuning and pulse width is analyzed.


Light Pulse Bulk Crystal Quantum Wire Nonlinear Absorption Inter Band Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Ivanov, R. S. Levitskii, and E. Yu. Perlin, Opt. Spectrosc. 107(2), 255 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64(23), 3071 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    B. C. Stuart, D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. 53(4), 1749 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. H. Spielmann, G. Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    A. C. Tien, S. Backus, H. Kapteyn, M. Murname, and G. Mourou, Phys. Rev. Lett. 82, 3883 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    G. Cerullo, S. De Silvestri, M. Nisoli, S. Sartania, S. Stagira, and O. Svelto, IEEE J. of Selected Topics in Quantum Electronics 6(6), 948 (2000).CrossRefGoogle Scholar
  7. 7.
    F. Quere, S. Guizard, and Ph. Martin, Europhys. Lett. 56(1), 138 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, Phys. Rev. Lett. 91(10), 107601 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    O. Efimov, S. Juodkazis, and H. Misawa, Phys. Rev. A 69(4), 042903 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, Appl. Phys. A 84, 413 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, Phys. Rev. Lett. 91(10), 107601 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    O. Efimov, S. Juodkazis, and H. Misawa, Phys. Rev. A 69, 042903 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    J. Bonze, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, J. Appl. Phys. 103, 054910 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    R. L. Shoemaker, in Laser and Coherence Spectroscopy, Ed. by I. I. Steinfeld (Plenum, New York, 1978).Google Scholar
  15. 15.
    E. Yu. Perlin, Zh. Eksp. Teor. Fiz. 105(1), 186 (1994).Google Scholar
  16. 16.
    E. Yu. Perlin, K. A. Eliseev, E. G. Idrisov, and Ya. T. Khalilov, Opt. Zh. 78(9), 3 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. Yu. Perlin
    • 1
    • 2
  • K. A. Eliseev
    • 1
  • E. G. Idrisov
    • 2
  • Ya. T. Khalilov
    • 2
  1. 1.Information Optical Technologies CenterITMO National Research UniversitySt. PetersburgRussia
  2. 2.Faculty of Physical MechanicsSt. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations