Advertisement

Optics and Spectroscopy

, Volume 112, Issue 1, pp 106–113 | Cite as

Prebreakdown excitation of crystals at double multiphoton resonance: III. Forbidden transitions

  • M. A. Bondarev
  • A. V. Ivanov
  • E. Yu. Perlin
Condensed-Matter Spectroscopy

Abstract

Within the three-band model of a crystal, we calculated the probabilities of forbidden-allowed four-photon transitions between the valence band and the conduction band under conditions of two-photon resonance on the adjacent transition between two conduction bands. We show that the transformation of the electronic band spectrum under the action of high-power light of a prebreakdown intensity leads to a nonmonotonic dependence of the rate of photogeneration electron-hole pairs on the radiation intensity. We determined conditions under which a small change in the intensity in the range 1011–1013 W/cm2 leads to an increase in the generation rate of electron-hole pairs by more than an order of magnitude, which can cause an increase in the number of nonequilibrium carriers to values sufficient to trigger processes of destruction of the material.

Keywords

Generation Rate Hole Pair Band Spectrum Photon Transition Nonequilibrium Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Galitskii and V. F. Elesin, Resonant Interaction of Electromagnetic Fields with Semiconductors (Energoatomizdat, Moscow, 1986) [in Russian].Google Scholar
  2. 2.
    E. Yu. Perlin and V. A. Kovarskii, Sov. Phys. Solid State 12, 2512 (1970).Google Scholar
  3. 3.
    S. P. Goreslavskii and V. F. Elesin, Pis’ma Zh. Eksp. Teor. Fiz. 10, 491 (1969).Google Scholar
  4. 4.
    V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, Zh. Eksp. Teor. Fiz. 57, 207 (1969).Google Scholar
  5. 5.
    Y. Yacoby, Phys. Rev. B 1, 1666 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. I. Balkarei and E. M. Epshtein, Fiz. Tverd. Tela 15, 925 (1973).Google Scholar
  7. 7.
    N. Tzoar and J. I. Gersten, Phys. Rev. B 12, 1132 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    V. E. Gruzdev, Phys. Rev. B 75, 205106 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    E. Yu. Perlin, Zh. Eksp. Teor. Fiz. 105, 186 (1994).Google Scholar
  10. 10.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spectrosc. 106(5), 677 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Ivanov and E. Yu. Perlin, Opt. Spectrosc. 106(5), 685 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47(5), 1945 (1964).Google Scholar
  13. 13.
    A. M. Basharov, Photonics: The Method of Unitary Transformation in Nonlinear Optics (MIFI, Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    E. Yu. Perlin and A. V. Fedorov, Opt. Spectrosc. 78(3), 400 (1995).ADSGoogle Scholar
  15. 15.
    O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, Opt. Mater. 17, 379 (2001).CrossRefGoogle Scholar
  16. 16.
    R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, and G. Cerullo, Opt. Lett. 29, 1900 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    R. Grzybowski, S. Logunov, A. Streltsov, and J. Sutherland, Opt. Express 17(7), 5058 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. A. Bondarev
    • 1
  • A. V. Ivanov
    • 1
  • E. Yu. Perlin
    • 1
  1. 1.Center of Information Optical TechnologiesSt. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations