Advertisement

Optics and Spectroscopy

, Volume 111, Issue 6, pp 919–935 | Cite as

Study of spectroscopic characteristics of holmium-doped double sodium-yttrium fluoride crystals Na0.4Y0.6F2.2:Ho3+

  • A. M. Tkachuk
  • S. E. Ivanova
  • A. A. Mirzaeva
  • F. Pellé
Condensed-Matter Spectroscopy

Abstract

We have grown crystals Na0.4Y0.6F2.2:Ho3+ (NYF:Ho3+) by the Bridgman-Stockbarger method. The optical spectra and luminescence kinetics of NYF:Ho3+ crystals have been studied. Based on the analysis of low-temperature absorption spectra, we determine the structure of the Stark splitting of holmium levels in NYF:Ho3+ crystals. From absorption spectra examined at T = 300 K, we calculate absorption cross-section spectra and oscillator strengths of transitions from the ground state of holmium to excited multiplets. We show that the absorption spectra of NYF:Ho3+ crystals consist of broad bands that lie in the UV, visible, and near-IR ranges. The most intense bands are observed in the visible range, they correspond to transitions 5 I 8 → (5 F 1, 5 G 6) and 5 I 8 → (5 F 4, 5 S 2), and their maximal absorption cross sections are σ abs max (λ = 450.3 nm) = 1.16 × 10−20 cm2 and σ abs max (λ = 535.1 nm) = 0.9 × 10−20 cm2. The intensity parameters Ω t have been calculated by the Judd-Ofelt method taking into account 10, 12, and 20 transitions from the 5 I 8 ground state to excited multiplets. We show that, with an increasing number of transitions taken into account in the calculation, the parameters Ω t somewhat increase. For 20 transitions, we have obtained the following intensity parameters: Ω2 = 0.97 × 10−20, Ω4 = 1.74 × 10−20, and Ω6 = 1.15 × 10−20 cm2. With these parameters, we have calculated the probabilities of radiative transitions, the radiative lifetimes, and the branching ratios. The rates of multiphoton nonradiative transitions have been estimated. The luminescence decay kinetics from excited holmium levels 5 F 3 (5 F 4, 5 S 2) and 5 F 5 have been studied upon selective excitation in the range of 490 nm, and the lifetimes of these levels have been experimentally determined. We find that the calculated and experimental rates of radiative and nonradiative relaxation from excited holmium levels agree well with each other. We show that, upon pumping in the range of 490 nm, the multiplet (5 F 4, 5 S 2) is populated as a result of the radiative and nonradiative excitation relaxation from the 5 F 3 level, while the lower-lying 5 F 5 level is populated due to direct radiative transitions 5 F 3, 25 F 5, obviating the cascade scheme 5 F 3 → (5 F 4, 5 S 2) ↝ 5 F 5. We conclude that NYF:Ho3+ crystals are processable; admit doping by holmium in high concentrations (up to 100%); and, with respect to all their radiative characteristics, can be considered as potential active media for solid-state continuously tunable lasers in the IR and visible ranges.

Keywords

Oscillator Strength Holmium Radiative Lifetime Luminescence Decay Nonradiative Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kaminskii, in Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, New York, London, Tokio, 1996), p. 561.Google Scholar
  2. 2.
    N. I. Agladze, M. N. Popova, G. N. Zhizhin, et al., Phys. Rev. Lett. 66, 477 (1991).CrossRefADSGoogle Scholar
  3. 3.
    H. Chou, P. Albers, A. Cassanho, and H. P. Jenssen, Springer Ser. Opt. Sci. 6(9), 325 (1986).Google Scholar
  4. 4.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, J. Alloys Compd. 380, 130 (2004).CrossRefGoogle Scholar
  5. 5.
    L. A. Riseberg and H. W. Moos, Phys. Rev. 174(2), 429 (1968).CrossRefADSGoogle Scholar
  6. 6.
    T. Miyakava and D. L. Dexter, Phys. Rev. B 1, 2961 (1970).CrossRefADSGoogle Scholar
  7. 7.
    R. E. Thoma, G. M. Hebert, H. Insley, and C. F. Weaver, Inorganic Chem. 2(5), 1005 (1963).CrossRefGoogle Scholar
  8. 8.
    Kh. S. Bagdasarov, A. A. Kaminskii, and B. P. Sobolev, Kristallografiya 13, 779 (1969).Google Scholar
  9. 9.
    P. P. Fedorov, B. P. Sobolev, and S. F. Belov, Neorg. Mater. 15(5), 816 (1979).Google Scholar
  10. 10.
    M. V. Zamoryanskaya, M. A. Petrova, and T. S. Semenova, Neorg. Mater. 34(6), 752 (1998).Google Scholar
  11. 11.
    M. V. Zamoryanskaya, L. G. Morozova, A. V. Poletimova, et al., Zh. Prikl. Spektrosk. 55(6), 1010 (1991).Google Scholar
  12. 12.
    S. E. Ivanova, A. M. Tkachuk, M.-F. Joubert, Y. Guyout, and S. Guy, Opt. Spectrosc. 89(4), 535 (2000).CrossRefADSGoogle Scholar
  13. 13.
    A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, and Y. Guyot, Opt. Spectrosc. 97(2), 251 (2004).CrossRefADSGoogle Scholar
  14. 14.
    A. M. Tkachuk, A. V. Poletimova, M. A. Petrova, V. Yu. Egorov, and N. E. Korolev, Opt. Spektrosk. 70(6), 1230 (1991).Google Scholar
  15. 15.
    B. G. Wybourne, Spectroscopic Properties of Rare Earth (Wiley, New York, 1965).Google Scholar
  16. 16.
    M. J. Weber, B. H. Matsinger, V. Donlan, and G. T. Surratt, J. Chem. Phys. 57, 562 (1972).CrossRefADSGoogle Scholar
  17. 17.
    B. R. Judd, Phys. Rev. 127, 750 (1963).CrossRefADSGoogle Scholar
  18. 18.
    G. S. Ofelt, J. Chem. Phys. 37(3), 511 (1962).CrossRefADSGoogle Scholar
  19. 19.
    W. T. Carnall, P. R. Fields, and K. Raynak, J. Chem. Phys. 49, 4412 (1968).CrossRefADSGoogle Scholar
  20. 20.
    A. M. Tkachuk, M. V. Petrov, and A. V. Khil’ko, in Spectroscopy of Crystals (Nauka, Leningrad, 1983), pp. 106–123 [in Russian].Google Scholar
  21. 21.
    C. Li, Y. Guyot, C. Linares, et al., OSA TOPS, ASSL 15, 91 (1993).Google Scholar
  22. 22.
    A. M. Tkachuk, in Spectroscopy of Crystals (Nauka, Leningrad, 1985), pp. 42–58 [in Russian].Google Scholar
  23. 23.
    A. M. Tkachuk, S. I. Klokishner, and M. V. Petrov, Opt. Spektrosk. 59(4), 802 (1985).Google Scholar
  24. 24.
    E. N. Bodunov and V. A. Malyshev, Opt. Spektrosk. 62, 1280 (1987).Google Scholar
  25. 25.
    E. N. Bodunov, Opt. Spektrosk. 73, 518 (1993).Google Scholar
  26. 26.
    E. N. Bodunov, Opt. Spektrosk. 81(3), 405 (1996).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. M. Tkachuk
    • 1
  • S. E. Ivanova
    • 1
  • A. A. Mirzaeva
    • 2
  • F. Pellé
    • 3
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Vavilov State Optical InstituteSt. PetersburgRussia
  3. 3.Laboratoire de Chimie de la Matiére Condensée de ParisUniversité Paris VParisFrance

Personalised recommendations