Optics and Spectroscopy

, Volume 111, Issue 6, pp 866–872 | Cite as

Coherent transmission and angular structure of light scattering by monolayer films of polymer dispersed liquid crystals with inhomogeneous boundary conditions

  • V. A. Loiko
  • U. Maschke
  • V. Ya. Zyryanov
  • A. V. Konkolovich
  • A. A. Miskevich
Polarization Optics


We consider monolayer polymer films with oriented droplets of a nematic liquid crystal (LC). Relations for the coherent transmission coefficients of a layer of oriented ellipsoidal droplets and for the intensity of light scattered by monolayers of spherical and spheroidal droplets have been obtained. The amplitude-phase screen model and the interference approximation of the theory of multiple wave scattering have been used. To describe light scattering by an individual ellipsoidal droplet with inhomogeneous surface binding, we have developed an anomalous diffraction approximation. For monolayers of spherical LC droplets, the coherent scattering coefficients and the angular scattering structure have been analyzed. The internal structure of nematic droplets have been calculated by the relaxation method based on the solution of the minimization problem of the free energy volume density. We have studied basic regular features of light scattering by a monolayer with homogeneous and inhomogeneous boundary conditions at the LC-polymer interface. We show that, for films that contain droplets with inhomogeneous boundary conditions of the tangentially normal type, the angular structure of the scattered light is asymmetric with respect to the polar scattering angle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Zharkova and A. S. Sonin, Liquid Crystal Composites (Nauka, Novosibirsk, 1994) [in Russian].Google Scholar
  2. 2.
    F. Simoni, Nonlinear Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Sci., Singapore, 1997).Google Scholar
  3. 3.
    M. G. Tomilin and S. M. Pestov, Properties of Liquid Crystal Materials (Politekhnika, St. Petersburg, 2005) [in Russian].Google Scholar
  4. 4.
    Display Systems, ed. by L. W. MacDonald and A. C. Lowe (Wiley, New York, 1997).Google Scholar
  5. 5.
    V. G. Chigrinov, Liquid Crystal Devices: Physics and Application (Artech House, Boston-London, 1999).Google Scholar
  6. 6.
    V. Ya. Zyryanov, S. L. Smorgon, and V. F. Shabanov, Mol. Eng. 1, 305 (1992).CrossRefGoogle Scholar
  7. 7.
    F. Basile, F. Bloisi, L. Vicari, and F. Simoni, Phys. Rev. E 48(1), 432 (1993).CrossRefADSGoogle Scholar
  8. 8.
    V. V. Presnyakov and T. V. Galstian, Mol. Cryst. Liq. Cryst. 413, 435 (2004).CrossRefGoogle Scholar
  9. 9.
    V. A. Loiko and A. V. Konkolovich, J. Phys. 33, 2201 (2000).ADSGoogle Scholar
  10. 10.
    V. A. Loiko and A. V. Konkolovich, JETP 96(3), 489 (2003).CrossRefADSGoogle Scholar
  11. 11.
    V. A. Loiko and A. V. Konkolovich, JETP 99(2), 343 (2004).CrossRefADSGoogle Scholar
  12. 12.
    V. A. Loiko and A. V. Konkolovich, JETP 103(6), 935 (2006).CrossRefADSGoogle Scholar
  13. 13.
    P. G. Lisinetskaya, A. V. Konkolovich, and A. V. Loiko, Appl. Opt. 48(17), 3144 (2009).CrossRefADSGoogle Scholar
  14. 14.
    A. Khan, I. Shiyanovskaya, T. Schneider, et al., J. the SID 15(1), 9 (2007).Google Scholar
  15. 15.
    V. Ya. Zyryanov, M. N. Krakhalev, O. O. Prishchepa, and A. V. Shabanov, JETP Lett. 86(6), 383 (2007).CrossRefADSGoogle Scholar
  16. 16.
    S. Zumer and J. W. Doane, Phys. Rev. A 34(4), 3373 (1986).CrossRefADSGoogle Scholar
  17. 17.
    S. Zumer, Phys. Rev. A 37(10), 4006 (1988).CrossRefADSGoogle Scholar
  18. 18.
    D. A. Yakovlev and O. A. Afonin, Opt. Spectrosc. 82(1), 78 (1997).ADSGoogle Scholar
  19. 19.
    V. A. Loiko, P. G. Maksimenko, and A. V. Konkolovich, Opt. Spectrosc. 105(5), 791 (2008).CrossRefADSGoogle Scholar
  20. 20.
    A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, J. Phys. Condens. Matter 16, 183 (2004).CrossRefGoogle Scholar
  21. 21.
    A. P. Ivanov, V. A. Loiko, and V. P. Dik, Light Propagation in Closely Packed Disperse Media (Nauka i Tekhnika, Minsk, 1988) [in Russian].Google Scholar
  22. 22.
    V. A. Loiko, U. Maschke, V. Ya. Zyryanov, A. V. Kon-kolovich, and A. A. Miskevich, Opt. Spectrosc. 110(1),110 (2011).CrossRefADSGoogle Scholar
  23. 23.
    V. Ya. Zyryanov, M. N. Krakhalev, O. O. Prishchepa, and A. V. Shabanov, JETP Lett. 86(6), 383 (2007).CrossRefADSGoogle Scholar
  24. 24.
    V. Ya. Zyryanov, M. N. Krakhalev, O. O. Prishchepa, and A. V. Shabanov, JETP Lett. 88(9), 597 (2008).CrossRefADSGoogle Scholar
  25. 25.
    M. N. Krakhalev, V. A. Loiko, and V. Ya. Zyryanov, Tech. Phys. Lett. 37(1), 34 (2011).CrossRefADSGoogle Scholar
  26. 26.
    O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, JETP Lett. 84(11), 607 (2006).CrossRefADSGoogle Scholar
  27. 27.
    E. P. Zege and A. A. Kokhanovskii, Opt. Spektrosk. 70(3), 723 (1991).Google Scholar
  28. 28.
    Y. Rosenfeld, Phys. Rev. A 42, 5978 (1990).CrossRefADSGoogle Scholar
  29. 29.
    J. A. Lock, Appl. Opt. 33, 4663 (1994).CrossRefADSGoogle Scholar
  30. 30.
    H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1961).Google Scholar
  31. 31.
    G. H. Meeten, Opt. Acta 29(6), 759 (1982).CrossRefADSGoogle Scholar
  32. 32.
    R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977; Mir, Moscow, 1981).Google Scholar
  33. 33.
    V. N. Snopko, Polarization Characteristics of Optical Radiation and Their Measurement Methods (Nauka i Tekhnika, Minsk, 1992) [in Russian].Google Scholar
  34. 34.
    E. F. Ishchenko and A. L. Sokolov, Polarization Optics (Izd-vo MEI, Moscow, 2005) [in Russian].Google Scholar
  35. 35.
    R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, et al., J. Appl. Phys. 69(9), 6380 (1991).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Loiko
    • 1
  • U. Maschke
    • 2
  • V. Ya. Zyryanov
    • 3
  • A. V. Konkolovich
    • 1
  • A. A. Miskevich
    • 1
  1. 1.B.I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Laboratoire de Chimie Macromoléculaire, UMR CNRS No. 8009Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  3. 3.Kirensky Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations