Advertisement

Optics and Spectroscopy

, Volume 111, Issue 5, pp 776–785 | Cite as

Optical and luminescence properties of zinc oxide (Review)

  • P. A. Rodnyi
  • I. V. Khodyuk
Condensed-Matter Spectroscopy

Abstract

We generalize and systematize basic experimental data on optical and luminescence properties of ZnO single crystals, thin films, powders, ceramics, and nanocrystals. We consider and study mechanisms by which two main emission bands occur, a short-wavelength band near the fundamental absorption edge and a broad long-wavelength band, the maximum of which usually lies in the green spectral range. We determine a relationship between the two luminescence bands and study in detail the possibility of controlling the characteristics of ZnO by varying the maximum position of the short-wavelength band. We show that the optical and luminescence characteristics of ZnO largely depend on the choice of the corresponding impurity and the parameters of the synthesis and subsequent treatment of the sample. Prospects for using zinc oxide as a scintillator material are discussed. Additionally, we consider experimental results that are of principal interest for practice.

Keywords

Zinc Oxide Luminescence Band Shallow Donor Green Luminescence Edge Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. H. Nickel and E. Terukov, Zinc Oxide-A Material For Micro- and Optoelectronic Applications (Springer, Dordrecht, 2005).CrossRefGoogle Scholar
  2. 2.
    E. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zink Oxide (Springer, Berlin, 2008).CrossRefGoogle Scholar
  3. 3.
    E. V. Kortunova, N. G. Nikolaeva, P. P. Chvanski, et al., J. Mater. Sci. 43, 2336 (2008).CrossRefADSGoogle Scholar
  4. 4.
    W. W. Moses, Nucl. Instrum. Methods Phys. Res. A 487, 123 (2002).CrossRefADSGoogle Scholar
  5. 5.
    S. H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).CrossRefADSGoogle Scholar
  6. 6.
    O. A. Novodvorsky, L. S. Gorbatenko, V. Ya. Panchenko, O. D. Khramova, Ye. A. Cherebilo, C. Wenzel, J. W. Bartha, V. T. Bublik, and K. D. Shcherbachev, Semiconductors 43(4), 419 (2009).CrossRefADSGoogle Scholar
  7. 7.
    RF Patent No. 2328755 C1 (2008).Google Scholar
  8. 8.
    L. Grigorjeva, D. Millers, J. Grabis, et al., IEEE Trans. Nucl. Sci. 55(3), 1551 (2008).CrossRefADSGoogle Scholar
  9. 9.
    D. Look, J. Electr. Mater. 35, 1299 (2006).CrossRefADSGoogle Scholar
  10. 10.
    B. K. Meyer, H. Alves, D. M. Hofmann, et al., Phys. Stat. Sol. (B) 241, 231 (2004).CrossRefADSGoogle Scholar
  11. 11.
    R. Dingle, Phys. Rev. Lett. 23, 579 (1969).CrossRefADSGoogle Scholar
  12. 12.
    Ya. I. Alivov, M. V. Chukichev, and V. A. Nikitenko, Semiconductors 38(1), 31 (2004).CrossRefADSGoogle Scholar
  13. 13.
    A. F. Kohan, G. Ceder, D. Morgan, et al., Phys. Rev. 61, 15019.Google Scholar
  14. 14.
    B. Guo, Z. R. Qiu, and K. S. Wong, Appl. Phys. Lett. 82, 2290 (2003).CrossRefADSGoogle Scholar
  15. 15.
    F. K. Shan, G. X. Liu, W. J. Lee, et al., Appl. Phys. Lett. 86, 221910 (2005).CrossRefADSGoogle Scholar
  16. 16.
    F. H. Leiter, H. R. Alves, A. Hofstaetter, et al., Phys. Status Solidi 226(1), R4 (2001).CrossRefADSGoogle Scholar
  17. 17.
    F. H. Leiter, H. R. Alves, N. G. Romanov, et al., Physica B 201, 340 (2003).Google Scholar
  18. 18.
    M. Liu, A. H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992).CrossRefGoogle Scholar
  19. 19.
    D. C. Reynolds, D. C. Look, B. Jogai, et al., J. Appl. Phys. 88, 2152 (2000).CrossRefADSGoogle Scholar
  20. 20.
    U. Ozgur, Ya. I. Alivov, C. Liu, et al., J. Appl. Phys. 98, 041301 (2005).CrossRefADSGoogle Scholar
  21. 21.
    L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 72, 035203 (2005).CrossRefADSGoogle Scholar
  22. 22.
    D. C. Reynolds, D. C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).CrossRefADSGoogle Scholar
  23. 23.
    H. Chen, S. Gu, K. Tang, et al., J. Lumin. 131, 1189 (2011).CrossRefGoogle Scholar
  24. 24.
    R. Laio, L. S. Vlasenko, and P. M. Vlasenko, J. Appl. Phys. 103 P, 12379 (2008).Google Scholar
  25. 25.
    A. Janotti and C. G. Van De Walle, Phys. Rev. B 76, 165202 (2007).CrossRefADSGoogle Scholar
  26. 26.
    L. S. Vlasenko, Appl. Magn. Res. 39, 103 (2010).CrossRefGoogle Scholar
  27. 27.
    B. Cao, W. Cai, and H. Zeng, Appl. Phys. Lett. 88, 161101 (2006).CrossRefADSGoogle Scholar
  28. 28.
    T. Moe Berseth, B. G. Svenson, A. Yu. Kuznetsov, et al., Appl. Phys. Lett. 89, 262112 (2006).CrossRefADSGoogle Scholar
  29. 29.
    K. S. Song and R. T. Williams, Self-trapped Excitons (Springer-verlag, Berlin, 1993).CrossRefGoogle Scholar
  30. 30.
    V. A. Fonoberov, K. A. Alim, A. A. Balandin, et al., Phys. Rev. 73, 165317.Google Scholar
  31. 31.
    N. Kumar, R. Kaur, and R. M. Mehra, J. Lumin. 126, 784 (2007).CrossRefGoogle Scholar
  32. 32.
    Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).CrossRefADSGoogle Scholar
  33. 33.
    H. J. Ko, Y. F. Chen, Z. Zhu, et al., Appl. Phys. Lett. 76, 1905 (2000).CrossRefADSGoogle Scholar
  34. 34.
    N. C. Giles, C. Xu, M. J. Callahan, et al., Appl. Phys. Lett. 89, 251906 (2006).CrossRefADSGoogle Scholar
  35. 35.
    C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).CrossRefADSGoogle Scholar
  36. 36.
    J. Li, S-H. Wei, S.-S. Li, et al., Phys. Rev. 74, 081201.Google Scholar
  37. 37.
    D. C. Look, D. C. Reynolds, C. W. Litton, et al., Appl. Phys. Lett. 81, 1830 (2002).CrossRefADSGoogle Scholar
  38. 38.
    T. Makino, Y. Segawa, S. Yoshida, et al., Appl. Phys. Lett. 85, 759 (2004).CrossRefADSGoogle Scholar
  39. 39.
    T. Makino, Y. Segawa, S. Yoshida, et al., Appl. Phys. Lett. 98, 093520 (2005).Google Scholar
  40. 40.
    M. Yan-Liang, O. Xiao-Ping, Z. Jing-Wen, et al., Chinese Phys. C 34, 354 (2010).CrossRefADSGoogle Scholar
  41. 41.
    T. Yamamoto and H. Katayama-Yoshida, J. Cryst. Growth 214/215, 552 (2000).CrossRefGoogle Scholar
  42. 42.
    J. M. Bian, X. M. Li, X. D. Gao, et al., Appl. Phys. Lett. 84, 541 (2004).CrossRefADSGoogle Scholar
  43. 43.
    A. Beyerle, J. P. Hurley, and L. Tunnell, Nucl. Instrum. Methods Phys. Res. A 299, 458 (1990).CrossRefADSGoogle Scholar
  44. 44.
    J. S. Neal, L. A. Boatner, N. C. Gils, et al., Nucl. Instrum. Methods Phys. Res. A 568, 803 (2006).CrossRefADSGoogle Scholar
  45. 45.
    T. Yanagida, Y. Fujimoto, A. Yoshikawa, et al., Ieee Trans. Nucl. Sci. 57, 1325 (2010).CrossRefADSGoogle Scholar
  46. 46.
    E. D. Bourrret-Courchesne, S. E. Derenso, and M. J. Weber, Nucl. Instrum. Methods Phys. Res. A 579, 1 (2007).CrossRefADSGoogle Scholar
  47. 47.
    D. Jimenez-Rey, B. Zurro, L. Rodriguez-Barquero, et al., Rev. Sci. Instrum. 81, D317 (2010).CrossRefGoogle Scholar
  48. 48.
    M. Lorenz, R. Johne, T. Nobis, et al., Appl. Phys. Lett. 89, 244510 (2006).CrossRefGoogle Scholar
  49. 49.
    US Patent No. 7048872 (2006).Google Scholar
  50. 50.
    US Patent. No. 193499(A1) (2007).Google Scholar
  51. 51.
    Y. Furukawa, M. Tanaka, T. Nakazato, et al., J. Opt. Soc. Am. 25(7), 118 (2008).CrossRefADSGoogle Scholar
  52. 52.
    Y. Shimada, H. Nishimura, M. Nakai, et al., Appl. Phys. Lett. 86, 051501 (2005).CrossRefADSGoogle Scholar
  53. 53.
    K. Yamanoi, K. Sakai, T. Nakazato, et al., Opt. Mater. 32, 1305 (2010).CrossRefADSGoogle Scholar
  54. 54.
    A. Mitra and R. K. Thareja, J. Appl. Phys. 89, 2025 (2001).CrossRefADSGoogle Scholar
  55. 55.
    E. I. Gorokhova, V. A. Demidenko, S. B. Mikhrin, et al., Ieee Trans. Nucl. Sci. 52, 3129 (2005).CrossRefADSGoogle Scholar
  56. 56.
    V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, et al., Rad. Measur. 42, 549 (2007).CrossRefGoogle Scholar
  57. 57.
    E. I. Gorokhova, P. A. Rodnyi, I. V. Khodyuk, et al., Opt. Zh. 75, 66 (2008).Google Scholar
  58. 58.
    P. A. Rodny, I. V. Khodyuk, E. I. Gorokhova, S. B. Mikhrin, and P. Dorenbos, Opt. Spectrosc. 105, 908 (2008).CrossRefADSGoogle Scholar
  59. 59.
    P. A. Rodnyi, I. V. Khodyuk, and E. I. Gorokhova, Pis’ma Zh. Tekh. Fiz. 36, 62 (2010).Google Scholar
  60. 60.
    I. V. Khodyuk, P. A. Rodnyi, E. I. Gorokhova, et al., Nauch.-Tekhn. Ved. SPBGPU 109, 28 (2010).Google Scholar
  61. 61.
    J. S. Neal, D. M. Devito, B. L. Armstrong, et al., Ieee Trans. Nucl. Sci. 56, 892 (2009).CrossRefADSGoogle Scholar
  62. 62.
    I. V. Khodyuk, P. A. Rodnyi, and P. Dorenbos, J. Appl. Phys. 107, 113513 (2010).CrossRefADSGoogle Scholar
  63. 63.
    I. V. Khodyuk and P. Dorenbos, J. Phys.: Condens. Matter 22, 485402 (2010).CrossRefGoogle Scholar
  64. 64.
    L. Grigorjeva, D. Millers, K. Smits, et al., Opt. Mater. 31, 1825 (2009).CrossRefADSGoogle Scholar
  65. 65.
    L. Grigorjeva, D. Millers, K. Smits, et al., Radiat. Meas. 45, 441 (2010).CrossRefGoogle Scholar
  66. 66.
    I. V. Markevich and V. I. Kushnirenko, Sol. State Commun. 149, 866 (2009).CrossRefADSGoogle Scholar
  67. 67.
    V. I. Kushnirenko, I. V. Markevich, and A. V. Rusavsky, Radiat. Meas. 45, 468 (2010).CrossRefGoogle Scholar
  68. 68.
    J. C. Ronfard-Haret, J. Lumin. 104, 103 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • P. A. Rodnyi
    • 1
  • I. V. Khodyuk
    • 1
  1. 1.St. Petersburg State Technical UniversitySt. PetersburgRussia

Personalised recommendations