Advertisement

Optics and Spectroscopy

, Volume 111, Issue 6, pp 949–955 | Cite as

Controlled hysteresis in optical systems surrounded by two feedback loops

  • G. P. Miroshnichenko
  • A. I. Trifanov
Nonlinear and Quantum Optics
  • 38 Downloads

Abstract

The absorptive bistability in a nonlinear optical system surrounded by two feedback loops is studied. The role of the nonlinear element is played by a cell with Λ-type atom vapors placed in a unidirectional ring cavity. The feedback includes two electromagnetic fields interacting with two atomic transitions. A two-dimensional domain of stability was found in the coordinates of field intensities at the input. The dependence of its shape on the values of different parameters of the optical system is studied. The input-output curves corresponding to different trajectories in the domain of stability are obtained.

Keywords

Optical Bistability Photon Resonance Optical Multistability Nonlinear Optical System Control Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995; Fizmatlit, Moscow, 2000).Google Scholar
  2. 2.
    D. N. Klyshko, Photonic and Nonlinear Optics (Nauka, Moscow, 1980) [in Russian].Google Scholar
  3. 3.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 2002).CrossRefGoogle Scholar
  4. 4.
    Optical Computing Digital and Symbolic, Ed. by R. Arrathoon (Marcel Dekker, New York, 1989; Mir, Moscow, 1999) [in Russian].Google Scholar
  5. 5.
    H. M. Wiswman, Phys. Rev. A 49, 2133 (1994).CrossRefADSGoogle Scholar
  6. 6.
    J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, Phys. Rev. Lett. 105, 040502 (2010).CrossRefADSGoogle Scholar
  7. 7.
    S. Lloyd, Phys. Rev. A 62, 022108 (2000).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    N. N. Rosanov, Optical Bistability and Hysteresis in Distributed Nonlinear Systems (Nauka, Moscow, 1997) [in Russian].Google Scholar
  9. 9.
    G. P. Agarwal and H. J. Carmichael, Phys. Rev. A 53(5), 2074 (1979).CrossRefADSGoogle Scholar
  10. 10.
    R. Bonifacio and L. A. Lugiato, Phys. Rev. A 18, 1129 (1978).CrossRefADSGoogle Scholar
  11. 11.
    L. A. Lugiato, in Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 1984), Vol. 21, p. 69.Google Scholar
  12. 12.
    D. F. Walls and P. Zoller, Opt. Commun. 34, 260 (1980).CrossRefADSGoogle Scholar
  13. 13.
    W. Harshawardhan and G. S. Agarwal, Phys. Rev. A 53(3), 1812 (1996).CrossRefADSGoogle Scholar
  14. 14.
    H. Wang, D. J. Goorskey, and M. Xiao, Phys. Rev. A 65, 011801 (2001).CrossRefADSGoogle Scholar
  15. 15.
    A. Joshi, A. Brown, H. Wang, and M. Xiao, Phys. Rev. A 67, 041801 (2003).CrossRefADSGoogle Scholar
  16. 16.
    A. Joshi and M. Xiao, Phys. Rev. Lett. 91(14), 143904 (2003).CrossRefADSGoogle Scholar
  17. 17.
    B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Usp. Fiz. Nauk 163(9), 1 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations