Optics and Spectroscopy

, Volume 111, Issue 5, pp 798–807 | Cite as

Transient intraband light absorption by quantum dots: Pump-probe spectroscopy

Condensed-Matter Spectroscopy

Abstract

We have developed a theory of a transient intraband light absorption by semiconductor quantum dots. This absorption plays an important role in the two-pulse pump-probe method, which enables determining the energy relaxation rates of electron-hole excited states. We have considered all possible schemes of this process wherein the carrier frequency of optical pump pulses is close to the resonance with the interband transition of the quantum-dot electronic subsystem, while the carrier frequency of probe pulses is resonant to the intraband transition. For ensembles of identical and size-distributed quantum dots, the probe pulse energy absorption induced by the pump pulse is analyzed in relation to the delay time between the pulses. We have found that, under certain conditions, this dependence can be described by a single, two, or three exponentials. The exponents of the exponentials are proportional to the energy relaxation rates of electron-hole excited states.

Keywords

Relaxation Rate Carrier Frequency Hole Pair Pump Pulse Probe Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011) [in Russian].Google Scholar
  2. 2.
    Device Applications of Silicon Nanocrystals and Nanostructures, Ed. by N. Koshida (Springer Science and Business Media, New York, 2009).Google Scholar
  3. 3.
    S. Sanguinetti, M. Guzzi, E. Grilli, et al., Phys. Rev. B 78, 085313 (2008).CrossRefADSGoogle Scholar
  4. 4.
    U. Bockelman and G. Bastard, Phys. Rev. B 42, 8947 (1990).CrossRefADSGoogle Scholar
  5. 5.
    H. Benisty, C. Sotomayor-Torres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).CrossRefADSGoogle Scholar
  6. 6.
    R. D. Schaller, J. M. Pietryga, S. V. Goupalov, et al., Phys. Rev. Lett. 95, 196401 (2005).CrossRefADSGoogle Scholar
  7. 7.
    E. Hendry, M. Koeberg, F. Wang, et al., Phys. Rev. Lett. 96, 057408 (2006).CrossRefADSGoogle Scholar
  8. 8.
    C. Bonati, A. Cannizzo, D. Tonti, et al., Phys. Rev. B 76, 033304 (2007).CrossRefADSGoogle Scholar
  9. 9.
    P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074709 (2005).CrossRefADSGoogle Scholar
  10. 10.
    A. Pandey and P. Guyot-Sionnest, Science 322, 929 (2008).CrossRefADSGoogle Scholar
  11. 11.
    V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).Google Scholar
  12. 12.
    T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992).CrossRefADSGoogle Scholar
  13. 13.
    T. Inoshita and H. Sakaki, Physica. B 227, 373 (1996).CrossRefADSGoogle Scholar
  14. 14.
    T. Inoshita and H. Sakaki, Phys. Rev. B 56, R4355 (1997).CrossRefADSGoogle Scholar
  15. 15.
    X. Li and Y. Arakawa, Phys. Rev. B 57, 12285 (1998).CrossRefADSGoogle Scholar
  16. 16.
    X. Li, H. Nakayama, and Y. Arakawa, Phys. Rev. B 59, 5069 (1999).CrossRefADSGoogle Scholar
  17. 17.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, Solid State Commun. 128, 219 (2003).CrossRefADSGoogle Scholar
  18. 18.
    A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, Phys. Rev. B 68, 205318 (2003).CrossRefADSGoogle Scholar
  19. 19.
    A. V. Fedorov and A. V. Baranov, Opt. Spectrosc. 97(1), 56 (2004).CrossRefADSGoogle Scholar
  20. 20.
    A. V. Fedorov and A. V. Baranov, Semiconductors 38, 1065 (2004).CrossRefADSGoogle Scholar
  21. 21.
    A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. Gaponenko, Phys. Rev. B 71, 195310 (2005).CrossRefADSGoogle Scholar
  22. 22.
    A. V. Fedorov and I. D. Rukhlenko, Opt. Spectrosc. 100(5), 716 (2006).CrossRefGoogle Scholar
  23. 23.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spectrosc. 100(2), 238 (2006).CrossRefADSGoogle Scholar
  24. 24.
    I. D. Rukhlenko and A. V. Fedorov, Opt. Spectrosc. 101(2), 253 (2006).CrossRefADSGoogle Scholar
  25. 25.
    P. C. Sercel, Phys. Rev. B 51, 14532 (1995).CrossRefADSGoogle Scholar
  26. 26.
    D. F. Schroeter, D. J. Griffiths, and P. C. Sersel, Phys. Rev. B 54, 1486 (1996).CrossRefADSGoogle Scholar
  27. 27.
    M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, Phys. Rev. B 70, 035318 (2004).CrossRefADSGoogle Scholar
  28. 28.
    A. V. Fedorov, V. A. Kremerman, and A. I. Ruskin, Phys. Rep. 248, 371 (1994).CrossRefADSGoogle Scholar
  29. 29.
    G. A. Narvaez, G. Bester, and A. Zunger, Phys. Rev. B 74, 075403 (2006).CrossRefADSGoogle Scholar
  30. 30.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, et al., Phys. Rev. B 78, 125311 (2008).CrossRefADSGoogle Scholar
  31. 31.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, et al., Phys. Rev. 81, 245303 (2010).CrossRefGoogle Scholar
  32. 32.
    S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, et al., J. Chem. Phys. 133, 104704 (2010).CrossRefADSGoogle Scholar
  33. 33.
    H. Kurtze, J. Seebeck, P. Gartner, et al., Phys. Rev. B 80, 235319 (2009).CrossRefADSGoogle Scholar
  34. 34.
    H.-Y. Liu, Z.-M. Meng, Q.-F. Dai, et al., J. Appl. Phys. 103, 083121 (2008).CrossRefADSGoogle Scholar
  35. 35.
    T. Berstermann, T. Auer, H. Kurtze, et al., Phys. Rev. B 76, 165318 (2007).CrossRefADSGoogle Scholar
  36. 36.
    F. Trojánek, K. Neudert, M. Bittner, and P. Maly, Phys. Rev. B 72, 075365 (2005).CrossRefADSGoogle Scholar
  37. 37.
    K. Miyajimaa, K. Edamatsub, and T. Itoh, J. Lumin. 108, 371 (2004).CrossRefGoogle Scholar
  38. 38.
    J. Urayama, T. B. Norris, H. Jiang, et al., Appl. Phys. Lett. 80, 2162 (2002).CrossRefADSGoogle Scholar
  39. 39.
    V. I. Klimov, C. J. Schwarz, D. W. McBranch, et al., Phys. Rev. B 60, R2177 (1999).CrossRefADSGoogle Scholar
  40. 40.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spectrosc. 109(3), 358 (2010).CrossRefADSGoogle Scholar
  41. 41.
    M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, Opt. Spectrosc. 110(1), 24 (2011).CrossRefADSGoogle Scholar
  42. 42.
    S. L. Sewall, R. R. Cooney, K. E. H. Anderson, et al., Phys. Rev. B 74, 235328 (2000).CrossRefADSGoogle Scholar
  43. 43.
    V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, et al., Phys. Rev. B 61, R13349 (2000).CrossRefADSGoogle Scholar
  44. 44.
    D. A. Yarotski, R. D. Averitt, N. Negre, et al., J. Opt. Soc. Am. B 19, 1480 (2002).CrossRefADSGoogle Scholar
  45. 45.
    M. C. Hoffmann, J. Hebling, H. Y. Hwang, et al., Phys. Rev. B 79, 161201 (2009).CrossRefADSGoogle Scholar
  46. 46.
    A. V. Fedorov, A. V. Baranov, and Y. Masumoto, Opt. Spectrosc. 93(1), 52 (2002).CrossRefADSGoogle Scholar
  47. 47.
    A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1978).Google Scholar
  48. 48.
    A. V. Fedorov, A. V. Baranov, and K. Inoue, Phys. Rev. B 54, 8627 (1996).CrossRefADSGoogle Scholar
  49. 49.
    V. K. Turkov, S. Yu. Kruchinin, and A. V. Fedorov, Opt. Spectrosc. 100(5), 740 (2011).CrossRefADSGoogle Scholar
  50. 50.
    I. M. Lifshits and V. V. Slezov, Zh. Eksp. Teor. Fiz. 35, 479 (1958).Google Scholar
  51. 51.
    M. Ivanda, K. Babocsi, C. Dem, et al., Phys. Rev. B 67, 235329 (2003).CrossRefADSGoogle Scholar
  52. 52.
    D. L. Ferreira and J. L. A. Alves, Nanotecnology 15, 975 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. Yu. Leonov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  1. 1.St. Petersburg University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations